本文整理汇总了Python中msct_image.Image.data[int(x[i]),int(y[i]),int(z[i])]方法的典型用法代码示例。如果您正苦于以下问题:Python Image.data[int(x[i]),int(y[i]),int(z[i])]方法的具体用法?Python Image.data[int(x[i]),int(y[i]),int(z[i])]怎么用?Python Image.data[int(x[i]),int(y[i]),int(z[i])]使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类msct_image.Image
的用法示例。
在下文中一共展示了Image.data[int(x[i]),int(y[i]),int(z[i])]方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: execute
# 需要导入模块: from msct_image import Image [as 别名]
# 或者: from msct_image.Image import data[int(x[i]),int(y[i]),int(z[i])] [as 别名]
def execute(self):
print 'Execution of the SCAD algorithm'
vesselness_file_name = "imageVesselNessFilter.nii.gz"
raw_file_name = "raw.nii"
if self.debug:
import matplotlib.pyplot as plt # import for debug purposes
# create tmp and copy input
path_tmp = sct.tmp_create()
sct.tmp_copy_nifti(self.input_image.absolutepath, path_tmp, raw_file_name)
if self.vesselness_provided:
sct.run('cp '+vesselness_file_name+' '+path_tmp+vesselness_file_name)
os.chdir(path_tmp)
# get input image information
img = Image(raw_file_name)
# save original orientation and change image to RPI
self.raw_orientation = img.change_orientation()
# get body symmetry
sym = SymmetryDetector(raw_file_name, self.contrast, crop_xy=1)
self.raw_symmetry = sym.execute()
# vesselness filter
if not self.vesselness_provided:
sct.run('sct_vesselness -i '+raw_file_name+' -t ' + self._contrast)
# load vesselness filter data and perform minimum path on it
img = Image(vesselness_file_name)
raw_orientation = img.change_orientation()
self.minimum_path_data, self.J1_min_path, self.J2_min_path = get_minimum_path(img.data, invert=1, debug=1, smooth_factor=1)
# Apply an exponent to the minimum path
self.minimum_path_powered = np.power(self.minimum_path_data, self.minimum_path_exponent)
# Saving in Image since smooth_minimal_path needs pixel dimensions
img.data = self.minimum_path_powered
# smooth resulting minimal path
self.smoothed_min_path = smooth_minimal_path(img)
# normalise symmetry values between 0 and 1
normalised_symmetry = equalize_array_histogram(self.raw_symmetry)
# multiply normalised symmetry data with the minimum path result
self.spine_detect_data = np.multiply(self.smoothed_min_path.data, normalised_symmetry)
# extract the centerline from the minimal path image
centerline_with_outliers = get_centerline(self.spine_detect_data, self.spine_detect_data.shape)
img.data = centerline_with_outliers
img.change_orientation()
img.file_name = "centerline_with_outliers"
img.save()
# use a b-spline to smooth out the centerline
x, y, z, dx, dy, dz = smooth_centerline("centerline_with_outliers.nii.gz")
# save the centerline
centerline_dim = img.dim
img.data = np.zeros(centerline_dim)
for i in range(0, np.size(x)-1):
img.data[int(x[i]), int(y[i]), int(z[i])] = 1
img.change_orientation(raw_orientation)
img.file_name = "centerline"
img.save()
# copy back centerline
os.chdir('../')
sct.tmp_copy_nifti(path_tmp + 'centerline.nii.gz',self.input_image.path,self.input_image.file_name+'_centerline'+self.input_image.ext)
if self.rm_tmp_file == 1:
import shutil
shutil.rmtree(path_tmp)
if self.produce_output:
self.produce_output_files()
示例2: execute
# 需要导入模块: from msct_image import Image [as 别名]
# 或者: from msct_image.Image import data[int(x[i]),int(y[i]),int(z[i])] [as 别名]
def execute(self):
print 'Execution of the SCAD algorithm in '+str(os.getcwd())
original_name = self.input_image.file_name
vesselness_file_name = "imageVesselNessFilter.nii.gz"
raw_file_name = "raw.nii"
self.setup_debug_folder()
if self.debug:
import matplotlib.pyplot as plt # import for debug purposes
# create tmp and copy input
path_tmp = self.create_temporary_path()
conv.convert(self.input_image.absolutepath, path_tmp+raw_file_name)
if self.vesselness_provided:
sct.run('cp '+vesselness_file_name+' '+path_tmp+vesselness_file_name)
os.chdir(path_tmp)
# get input image information
img = Image(raw_file_name)
# save original orientation and change image to RPI
self.raw_orientation = img.change_orientation()
# get body symmetry
if self.enable_symmetry:
from msct_image import change_data_orientation
sym = SymmetryDetector(raw_file_name, self.contrast, crop_xy=0)
self.raw_symmetry = sym.execute()
img.change_orientation(self.raw_orientation)
self.output_debug_file(img, self.raw_symmetry, "body_symmetry")
img.change_orientation()
# vesselness filter
if not self.vesselness_provided:
sct.run('sct_vesselness -i '+raw_file_name+' -t ' + self._contrast+" -radius "+str(self.spinalcord_radius))
# load vesselness filter data and perform minimum path on it
img = Image(vesselness_file_name)
img.change_orientation()
self.minimum_path_data, self.J1_min_path, self.J2_min_path = get_minimum_path(img.data, invert=1, debug=1)
self.output_debug_file(img, self.minimum_path_data, "minimal_path")
self.output_debug_file(img, self.J1_min_path, "J1_minimal_path")
self.output_debug_file(img, self.J2_min_path, "J2_minimal_path")
# Apply an exponent to the minimum path
self.minimum_path_powered = np.power(self.minimum_path_data, self.minimum_path_exponent)
self.output_debug_file(img, self.minimum_path_powered, "minimal_path_power_"+str(self.minimum_path_exponent))
# Saving in Image since smooth_minimal_path needs pixel dimensions
img.data = self.minimum_path_powered
# smooth resulting minimal path
self.smoothed_min_path = smooth_minimal_path(img)
self.output_debug_file(img, self.smoothed_min_path.data, "minimal_path_smooth")
# normalise symmetry values between 0 and 1
if self.enable_symmetry:
normalised_symmetry = normalize_array_histogram(self.raw_symmetry)
self.output_debug_file(img, self.smoothed_min_path.data, "minimal_path_smooth")
# multiply normalised symmetry data with the minimum path result
from msct_image import change_data_orientation
self.spine_detect_data = np.multiply(self.smoothed_min_path.data, change_data_orientation(np.power(normalised_symmetry, self.symmetry_exponent), self.raw_orientation, "RPI"))
self.output_debug_file(img, self.spine_detect_data, "symmetry_x_min_path")
# extract the centerline from the minimal path image
self.centerline_with_outliers = get_centerline(self.spine_detect_data, self.spine_detect_data.shape)
else:
# extract the centerline from the minimal path image
self.centerline_with_outliers = get_centerline(self.smoothed_min_path.data, self.smoothed_min_path.data.shape)
self.output_debug_file(img, self.centerline_with_outliers, "centerline_with_outliers")
# saving centerline with outliers to have
img.data = self.centerline_with_outliers
img.change_orientation()
img.file_name = "centerline_with_outliers"
img.save()
# use a b-spline to smooth out the centerline
x, y, z, dx, dy, dz = smooth_centerline("centerline_with_outliers.nii.gz")
# save the centerline
nx, ny, nz, nt, px, py, pz, pt = img.dim
img.data = np.zeros((nx, ny, nz))
for i in range(0, np.size(x)-1):
img.data[int(x[i]), int(y[i]), int(z[i])] = 1
self.output_debug_file(img, img.data, "centerline")
img.change_orientation(self.raw_orientation)
img.file_name = "centerline"
img.save()
# copy back centerline
os.chdir('../')
conv.convert(path_tmp+img.file_name+img.ext, self.output_filename)
if self.rm_tmp_file == 1:
import shutil
shutil.rmtree(path_tmp)