当前位置: 首页>>代码示例>>Python>>正文


Python Image.changeType方法代码示例

本文整理汇总了Python中msct_image.Image.changeType方法的典型用法代码示例。如果您正苦于以下问题:Python Image.changeType方法的具体用法?Python Image.changeType怎么用?Python Image.changeType使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在msct_image.Image的用法示例。


在下文中一共展示了Image.changeType方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: plan_ref

# 需要导入模块: from msct_image import Image [as 别名]
# 或者: from msct_image.Image import changeType [as 别名]
    def plan_ref(self):
        """
        Generate a plane in the reference space for each label present in the input image
        """

        image_output = Image(self.image_ref, self.verbose)
        image_output.data *= 0

        image_input_neg = Image(self.image_input, self.verbose).copy()
        image_input_pos = Image(self.image_input, self.verbose).copy()
        image_input_neg.data *=0
        image_input_pos.data *=0
        X, Y, Z = (self.image_input.data< 0).nonzero()
        for i in range(len(X)):
            image_input_neg.data[X[i], Y[i], Z[i]] = -self.image_input.data[X[i], Y[i], Z[i]] # in order to apply getNonZeroCoordinates
        X_pos, Y_pos, Z_pos = (self.image_input.data> 0).nonzero()
        for i in range(len(X_pos)):
            image_input_pos.data[X_pos[i], Y_pos[i], Z_pos[i]] = self.image_input.data[X_pos[i], Y_pos[i], Z_pos[i]]

        coordinates_input_neg = image_input_neg.getNonZeroCoordinates()
        coordinates_input_pos = image_input_pos.getNonZeroCoordinates()

        image_output.changeType('float32')
        for coord in coordinates_input_neg:
            image_output.data[:, :, int(coord.z)] = -coord.value #PB: takes the int value of coord.value
        for coord in coordinates_input_pos:
            image_output.data[:, :, int(coord.z)] = coord.value

        return image_output
开发者ID:,项目名称:,代码行数:31,代码来源:

示例2: continuous_vertebral_levels

# 需要导入模块: from msct_image import Image [as 别名]
# 或者: from msct_image.Image import changeType [as 别名]
    def continuous_vertebral_levels(self):
        """
        This function transforms the vertebral levels file from the template into a continuous file.
        Instead of having integer representing the vertebral level on each slice, a continuous value that represents
        the position of the slice in the vertebral level coordinate system.
        The image must be RPI
        :return:
        """
        im_input = Image(self.image_input, self.verbose)
        im_output = Image(self.image_input, self.verbose)
        im_output.data *= 0

        # 1. extract vertebral levels from input image
        #   a. extract centerline
        #   b. for each slice, extract corresponding level
        nx, ny, nz, nt, px, py, pz, pt = im_input.dim
        from sct_straighten_spinalcord import smooth_centerline
        x_centerline_fit, y_centerline_fit, z_centerline_fit, x_centerline_deriv, y_centerline_deriv, z_centerline_deriv = smooth_centerline(self.image_input, algo_fitting='nurbs', verbose=0)
        value_centerline = np.array([im_input.data[int(x_centerline_fit[it]), int(y_centerline_fit[it]), int(z_centerline_fit[it])] for it in range(len(z_centerline_fit))])

        # 2. compute distance for each vertebral level --> Di for i being the vertebral levels
        vertebral_levels = {}
        for slice_image, level in enumerate(value_centerline):
            if level not in vertebral_levels:
                vertebral_levels[level] = slice_image

        length_levels = {}
        for level in vertebral_levels:
            indexes_slice = np.where(value_centerline == level)
            length_levels[level] = np.sum([math.sqrt(((x_centerline_fit[indexes_slice[0][index_slice + 1]] - x_centerline_fit[indexes_slice[0][index_slice]])*px)**2 +
                                                     ((y_centerline_fit[indexes_slice[0][index_slice + 1]] - y_centerline_fit[indexes_slice[0][index_slice]])*py)**2 +
                                                     ((z_centerline_fit[indexes_slice[0][index_slice + 1]] - z_centerline_fit[indexes_slice[0][index_slice]])*pz)**2)
                                           for index_slice in range(len(indexes_slice[0]) - 1)])

        # 2. for each slice:
        #   a. identify corresponding vertebral level --> i
        #   b. calculate distance of slice from upper vertebral level --> d
        #   c. compute relative distance in the vertebral level coordinate system --> d/Di
        continuous_values = {}
        for it, iz in enumerate(z_centerline_fit):
            level = value_centerline[it]
            indexes_slice = np.where(value_centerline == level)
            indexes_slice = indexes_slice[0][indexes_slice[0] >= it]
            distance_from_level = np.sum([math.sqrt(((x_centerline_fit[indexes_slice[index_slice + 1]] - x_centerline_fit[indexes_slice[index_slice]]) * px * px) ** 2 +
                                                    ((y_centerline_fit[indexes_slice[index_slice + 1]] - y_centerline_fit[indexes_slice[index_slice]]) * py * py) ** 2 +
                                                    ((z_centerline_fit[indexes_slice[index_slice + 1]] - z_centerline_fit[indexes_slice[index_slice]]) * pz * pz) ** 2)
                                          for index_slice in range(len(indexes_slice) - 1)])
            continuous_values[iz] = level + 2.0 * distance_from_level / float(length_levels[level])

        # 3. saving data
        # for each slice, get all non-zero pixels and replace with continuous values
        coordinates_input = self.image_input.getNonZeroCoordinates()
        im_output.changeType('float32')
        # for all points in input, find the value that has to be set up, depending on the vertebral level
        for i, coord in enumerate(coordinates_input):
            im_output.data[int(coord.x), int(coord.y), int(coord.z)] = continuous_values[coord.z]

        return im_output
开发者ID:,项目名称:,代码行数:60,代码来源:

示例3: convert

# 需要导入模块: from msct_image import Image [as 别名]
# 或者: from msct_image.Image import changeType [as 别名]
def convert(fname_in, fname_out, squeeze_data=True, type=None, verbose=1):
    """
    Convert data
    :return True/False
    """
    from msct_image import Image
    from sct_utils import printv
    printv('sct_convert -i '+fname_in+' -o '+fname_out, verbose, 'code')
    # Open file
    im = Image(fname_in)
    # Save file
    im.setFileName(fname_out)
    if type is not None:
        im.changeType(type=type)
    im.save(squeeze_data=squeeze_data)
    return im
开发者ID:,项目名称:,代码行数:18,代码来源:

示例4: Image

# 需要导入模块: from msct_image import Image [as 别名]
# 或者: from msct_image.Image import changeType [as 别名]
#!/usr/bin/env python
# change type of template data

import os
import commands
import sys
from shutil import move
# Get path of the toolbox
status, path_sct = commands.getstatusoutput('echo $SCT_DIR')
# Append path that contains scripts, to be able to load modules
sys.path.append(path_sct + '/scripts')
from msct_image import Image
import sct_utils as sct

path_template = '/Users/julien/data/PAM50/template'
folder_PAM50 = 'PAM50/template/'
os.chdir(path_template)
sct.create_folder(folder_PAM50)

for file_template in ['MNI-Poly-AMU_T1.nii.gz', 'MNI-Poly-AMU_T2.nii.gz', 'MNI-Poly-AMU_T2star.nii.gz']:
    im = Image(file_template)
    # remove negative values
    data = im.data
    data[data<0] = 0
    im.data = data
    im.changeType('uint16')
    file_new = file_template.replace('MNI-Poly-AMU', 'PAM50')
    im.setFileName(file_new)
    im.save()
    # move to folder
    move(file_new, folder_PAM50+file_new)
开发者ID:poquirion,项目名称:spinalcordtoolbox,代码行数:33,代码来源:sct_change_file_type.py

示例5: compute_csa

# 需要导入模块: from msct_image import Image [as 别名]
# 或者: from msct_image.Image import changeType [as 别名]

#.........这里部分代码省略.........
        csa = csa_smooth
    else:
        sct.printv('.. No smoothing!', verbose)


    # Create output text file
    sct.printv('\nWrite text file...', verbose)
    file_results = open('csa.txt', 'w')
    for i in range(min_z_index, max_z_index+1):
        file_results.write(str(int(i)) + ',' + str(csa[i-min_z_index])+'\n')
        # Display results
        sct.printv('z='+str(i-min_z_index)+': '+str(csa[i-min_z_index])+' mm^2', verbose, 'bold')
    file_results.close()

    # output volume of csa values
    sct.printv('\nCreate volume of CSA values...', verbose)
    data_csa = data_seg.astype(np.float32, copy=False)
    # loop across slices
    for iz in range(min_z_index, max_z_index+1):
        # retrieve seg pixels
        x_seg, y_seg = (data_csa[:, :, iz] > 0).nonzero()
        seg = [[x_seg[i],y_seg[i]] for i in range(0, len(x_seg))]
        # loop across pixels in segmentation
        for i in seg:
            # replace value with csa value
            data_csa[i[0], i[1], iz] = csa[iz-min_z_index]
    # replace data
    im_seg.data = data_csa
    # set original orientation
    # TODO: FIND ANOTHER WAY!!
    # im_seg.change_orientation(orientation) --> DOES NOT WORK!
    # set file name -- use .gz because faster to write
    im_seg.setFileName('csa_volume_RPI.nii.gz')
    im_seg.changeType('float32')
    # save volume
    im_seg.save()

    # get orientation of the input data
    im_seg_original = Image('segmentation.nii.gz')
    orientation = im_seg_original.orientation
    sct.run('sct_image -i csa_volume_RPI.nii.gz -setorient '+orientation+' -o '+file_csa_volume)

    # come back to parent folder
    os.chdir('..')

    # Generate output files
    sct.printv('\nGenerate output files...', verbose)
    copyfile(path_tmp+'csa.txt', path_data+param.fname_csa)
    # sct.generate_output_file(path_tmp+'csa.txt', path_data+param.fname_csa)  # extension already included in param.fname_csa
    sct.generate_output_file(path_tmp+file_csa_volume, path_data+file_csa_volume)  # extension already included in name_output

    # average csa across vertebral levels or slices if asked (flag -z or -l)
    if slices or vert_levels:
        from sct_extract_metric import save_metrics

        warning = ''
        if vert_levels and not fname_vertebral_labeling:
            sct.printv('\nERROR: Vertebral labeling file is missing. See usage.\n', 1, 'error')

        elif vert_levels and fname_vertebral_labeling:

            # from sct_extract_metric import get_slices_matching_with_vertebral_levels
            sct.printv('\tSelected vertebral levels... '+vert_levels)
            # convert the vertebral labeling file to RPI orientation
            im_vertebral_labeling = set_orientation(Image(fname_vertebral_labeling), 'RPI', fname_out=path_tmp+'vertebral_labeling_RPI.nii')
开发者ID:poquirion,项目名称:spinalcordtoolbox,代码行数:69,代码来源:sct_process_segmentation.py

示例6: extract_centerline

# 需要导入模块: from msct_image import Image [as 别名]
# 或者: from msct_image.Image import changeType [as 别名]

#.........这里部分代码省略.........
    nx, ny, nz, nt, px, py, pz, pt = im_seg.dim
    sct.printv('.. matrix size: '+str(nx)+' x '+str(ny)+' x '+str(nz), verbose)
    sct.printv('.. voxel size:  '+str(px)+'mm x '+str(py)+'mm x '+str(pz)+'mm', verbose)

    # # Get dimension
    # sct.printv('\nGet dimensions...', verbose)
    # nx, ny, nz, nt, px, py, pz, pt = im_seg.dim
    #
    # # Extract orientation of the input segmentation
    # orientation = get_orientation(im_seg)
    # sct.printv('\nOrientation of segmentation image: ' + orientation, verbose)
    #
    # sct.printv('\nOpen segmentation volume...', verbose)
    # data = im_seg.data
    # hdr = im_seg.hdr

    # Extract min and max index in Z direction
    X, Y, Z = (data>0).nonzero()
    min_z_index, max_z_index = min(Z), max(Z)
    x_centerline = [0 for i in range(0,max_z_index-min_z_index+1)]
    y_centerline = [0 for i in range(0,max_z_index-min_z_index+1)]
    z_centerline = [iz for iz in range(min_z_index, max_z_index+1)]
    # Extract segmentation points and average per slice
    for iz in range(min_z_index, max_z_index+1):
        x_seg, y_seg = (data[:,:,iz]>0).nonzero()
        x_centerline[iz-min_z_index] = np.mean(x_seg)
        y_centerline[iz-min_z_index] = np.mean(y_seg)
    for k in range(len(X)):
        data[X[k], Y[k], Z[k]] = 0

    # extract centerline and smooth it
    x_centerline_fit, y_centerline_fit, z_centerline_fit, x_centerline_deriv, y_centerline_deriv, z_centerline_deriv = smooth_centerline('segmentation_RPI.nii.gz', type_window = type_window, window_length = window_length, algo_fitting = algo_fitting, verbose = verbose)

    if verbose == 2:
            import matplotlib.pyplot as plt

            #Creation of a vector x that takes into account the distance between the labels
            nz_nonz = len(z_centerline)
            x_display = [0 for i in range(x_centerline_fit.shape[0])]
            y_display = [0 for i in range(y_centerline_fit.shape[0])]
            for i in range(0, nz_nonz, 1):
                x_display[int(z_centerline[i]-z_centerline[0])] = x_centerline[i]
                y_display[int(z_centerline[i]-z_centerline[0])] = y_centerline[i]

            plt.figure(1)
            plt.subplot(2,1,1)
            plt.plot(z_centerline_fit, x_display, 'ro')
            plt.plot(z_centerline_fit, x_centerline_fit)
            plt.xlabel("Z")
            plt.ylabel("X")
            plt.title("x and x_fit coordinates")

            plt.subplot(2,1,2)
            plt.plot(z_centerline_fit, y_display, 'ro')
            plt.plot(z_centerline_fit, y_centerline_fit)
            plt.xlabel("Z")
            plt.ylabel("Y")
            plt.title("y and y_fit coordinates")
            plt.show()


    # Create an image with the centerline
    for iz in range(min_z_index, max_z_index+1):
        data[round(x_centerline_fit[iz-min_z_index]), round(y_centerline_fit[iz-min_z_index]), iz] = 1 # if index is out of bounds here for hanning: either the segmentation has holes or labels have been added to the file
    # Write the centerline image in RPI orientation
    # hdr.set_data_dtype('uint8') # set imagetype to uint8
    sct.printv('\nWrite NIFTI volumes...', verbose)
    im_seg.data = data
    im_seg.setFileName('centerline_RPI.nii.gz')
    im_seg.changeType('uint8')
    im_seg.save()

    sct.printv('\nSet to original orientation...', verbose)
    # get orientation of the input data
    im_seg_original = Image('segmentation.nii.gz')
    orientation = im_seg_original.orientation
    sct.run('sct_image -i centerline_RPI.nii.gz -setorient '+orientation+' -o centerline.nii.gz')

    # create a txt file with the centerline
    name_output_txt = 'centerline.txt'
    sct.printv('\nWrite text file...', verbose)
    file_results = open(name_output_txt, 'w')
    for i in range(min_z_index, max_z_index+1):
        file_results.write(str(int(i)) + ' ' + str(x_centerline_fit[i-min_z_index]) + ' ' + str(y_centerline_fit[i-min_z_index]) + '\n')
    file_results.close()

    # come back to parent folder
    os.chdir('..')

    # Generate output files
    sct.printv('\nGenerate output files...', verbose)
    sct.generate_output_file(path_tmp+'centerline.nii.gz', file_data+'_centerline.nii.gz')
    sct.generate_output_file(path_tmp+'centerline.txt', file_data+'_centerline.txt')

    # Remove temporary files
    if remove_temp_files:
        sct.printv('\nRemove temporary files...', verbose)
        sct.run('rm -rf '+path_tmp, verbose)

    return file_data+'_centerline.nii.gz'
开发者ID:poquirion,项目名称:spinalcordtoolbox,代码行数:104,代码来源:sct_process_segmentation.py

示例7: open

# 需要导入模块: from msct_image import Image [as 别名]
# 或者: from msct_image.Image import changeType [as 别名]
        # Create output text file
        if output_file_name != None :
            file_name = output_file_name
        else: file_name = 'generated_centerline.txt'

        sct.printv('\nWrite text file...')
        #file_results = open("../"+file_name, 'w')
        file_results = open(file_name, 'w')
        for i in range(0, z_centerline_fit.shape[0], 1):
            file_results.write(str(int(z_centerline_fit[i])) + ' ' + str(x_centerline_fit[i]) + ' ' + str(y_centerline_fit[i]) + '\n')
        file_results.close()

        #return file_name



# =======================================================================================================================
# Start program
#=======================================================================================================================
if __name__ == "__main__":


    parser = Parser(__file__)
    parser.usage.set_description('Class to process centerline extraction from.')
    parser.add_option()
    arguments = parser.parse(sys.argv[1:])

    image = Image(arguments["-i"])
    image.changeType('minimize')
开发者ID:ComtoisOlivier,项目名称:spinalcordtoolbox,代码行数:31,代码来源:msct_get_centerline_from_labels.py

示例8: Image

# 需要导入模块: from msct_image import Image [as 别名]
# 或者: from msct_image.Image import changeType [as 别名]
#!/usr/bin/env python

from skimage import transform as tf
from skimage import data
from msct_image import Image
from math import pi


im0 = Image('data_by_slice/slice_0_im.nii.gz')
seg0 = Image('data_by_slice/slice_0_seg.nii.gz')
'''
transfo = tf.SimilarityTransform(scale=1, rotation=pi / 2, translation=(0, 1))
print transfo.params

im0.changeType('uint8')
print im0.data

text = data.text()
im_moved = tf.warp(transfo, text)  # im0.data)

print im_moved

Image(param=im_moved, absolutepath='moved_slice_0.nii.gz').save()
'''

text = data.text()

seg0.changeType('uint8')
test = seg0.data

Image(param=test, absolutepath='converted_slice_0_seg.nii.gz').save()
开发者ID:poquirion,项目名称:spinalcordtoolbox,代码行数:33,代码来源:ski_test.py


注:本文中的msct_image.Image.changeType方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。