本文整理汇总了Python中mobject.vectorized_mobject.VMobject.get_center方法的典型用法代码示例。如果您正苦于以下问题:Python VMobject.get_center方法的具体用法?Python VMobject.get_center怎么用?Python VMobject.get_center使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mobject.vectorized_mobject.VMobject
的用法示例。
在下文中一共展示了VMobject.get_center方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_matrix_multiplication_question
# 需要导入模块: from mobject.vectorized_mobject import VMobject [as 别名]
# 或者: from mobject.vectorized_mobject.VMobject import get_center [as 别名]
def get_matrix_multiplication_question(self):
why = TextMobject("Why?").highlight(BLUE)
mult = self.get_matrix_multiplication()
why.next_to(mult, UP)
result = VMobject(why, mult)
result.get_center = lambda : mult.get_center()
return result
示例2: get_cross_product_question
# 需要导入模块: from mobject.vectorized_mobject import VMobject [as 别名]
# 或者: from mobject.vectorized_mobject.VMobject import get_center [as 别名]
def get_cross_product_question(self):
cross = TexMobject("\\vec{v} \\times \\vec{w}")
left_right_arrow = DoubleArrow(Point(LEFT), Point(RIGHT))
det = TextMobject("Det")
q_mark = TextMobject("?")
left_right_arrow.next_to(cross)
det.next_to(left_right_arrow)
q_mark.next_to(left_right_arrow, UP)
cross_question = VMobject(cross, left_right_arrow, q_mark, det)
cross_question.get_center = lambda : left_right_arrow.get_center()
return cross_question
示例3: NumberPlane
# 需要导入模块: from mobject.vectorized_mobject import VMobject [as 别名]
# 或者: from mobject.vectorized_mobject.VMobject import get_center [as 别名]
class NumberPlane(VMobject):
CONFIG = {
"color" : BLUE_D,
"secondary_color" : BLUE_E,
"axes_color" : WHITE,
"secondary_stroke_width" : 1,
"x_radius": None,
"y_radius": None,
"x_unit_size" : 1,
"y_unit_size" : 1,
"center_point" : ORIGIN,
"x_line_frequency" : 1,
"y_line_frequency" : 1,
"secondary_line_ratio" : 1,
"written_coordinate_height" : 0.2,
"propogate_style_to_family" : False,
}
def generate_points(self):
if self.x_radius is None:
center_to_edge = (SPACE_WIDTH + abs(self.center_point[0]))
self.x_radius = center_to_edge / self.x_unit_size
if self.y_radius is None:
center_to_edge = (SPACE_HEIGHT + abs(self.center_point[1]))
self.y_radius = center_to_edge / self.y_unit_size
self.axes = VMobject()
self.main_lines = VMobject()
self.secondary_lines = VMobject()
tuples = [
(
self.x_radius,
self.x_line_frequency,
self.y_radius*DOWN,
self.y_radius*UP,
RIGHT
),
(
self.y_radius,
self.y_line_frequency,
self.x_radius*LEFT,
self.x_radius*RIGHT,
UP,
),
]
for radius, freq, start, end, unit in tuples:
main_range = np.arange(0, radius, freq)
step = freq/float(freq + self.secondary_line_ratio)
for v in np.arange(0, radius, step):
line1 = Line(start+v*unit, end+v*unit)
line2 = Line(start-v*unit, end-v*unit)
if v == 0:
self.axes.add(line1)
elif v in main_range:
self.main_lines.add(line1, line2)
else:
self.secondary_lines.add(line1, line2)
self.add(self.secondary_lines, self.main_lines, self.axes)
self.stretch(self.x_unit_size, 0)
self.stretch(self.y_unit_size, 1)
self.shift(self.center_point)
#Put x_axis before y_axis
y_axis, x_axis = self.axes.split()
self.axes = VMobject(x_axis, y_axis)
def init_colors(self):
VMobject.init_colors(self)
self.axes.set_stroke(self.axes_color, self.stroke_width)
self.main_lines.set_stroke(self.color, self.stroke_width)
self.secondary_lines.set_stroke(
self.secondary_color, self.secondary_stroke_width
)
return self
def get_center_point(self):
return self.coords_to_point(0, 0)
def coords_to_point(self, x, y):
x, y = np.array([x, y])
result = self.axes.get_center()
result += x*self.get_x_unit_size()*RIGHT
result += y*self.get_y_unit_size()*UP
return result
def point_to_coords(self, point):
new_point = point - self.axes.get_center()
x = new_point[0]/self.get_x_unit_size()
y = new_point[1]/self.get_y_unit_size()
return x, y
def get_x_unit_size(self):
return self.axes.get_width() / (2.0*self.x_radius)
def get_y_unit_size(self):
return self.axes.get_height() / (2.0*self.y_radius)
def get_coordinate_labels(self, x_vals = None, y_vals = None):
result = []
if x_vals == None and y_vals == None:
x_vals = range(-int(self.x_radius), int(self.x_radius))
y_vals = range(-int(self.y_radius), int(self.y_radius))
#.........这里部分代码省略.........
示例4: PiCreature
# 需要导入模块: from mobject.vectorized_mobject import VMobject [as 别名]
# 或者: from mobject.vectorized_mobject.VMobject import get_center [as 别名]
class PiCreature(SVGMobject):
CONFIG = {
"color" : BLUE_E,
"stroke_width" : 0,
"fill_opacity" : 1.0,
"initial_scale_factor" : 0.01,
"corner_scale_factor" : 0.75,
"flip_at_start" : False,
"is_looking_direction_purposeful" : False,
}
def __init__(self, mode = "plain", **kwargs):
self.parts_named = False
svg_file = os.path.join(
PI_CREATURE_DIR,
"PiCreatures_%s.svg"%mode
)
digest_config(self, kwargs, locals())
SVGMobject.__init__(self, svg_file, **kwargs)
self.init_colors()
if self.flip_at_start:
self.flip()
def name_parts(self):
self.mouth = self.submobjects[MOUTH_INDEX]
self.body = self.submobjects[BODY_INDEX]
self.pupils = VMobject(*[
self.submobjects[LEFT_PUPIL_INDEX],
self.submobjects[RIGHT_PUPIL_INDEX]
])
self.eyes = VMobject(*[
self.submobjects[LEFT_EYE_INDEX],
self.submobjects[RIGHT_EYE_INDEX]
])
self.submobjects = []
self.add(self.body, self.mouth, self.eyes, self.pupils)
self.parts_named = True
def init_colors(self):
self.set_stroke(color = BLACK, width = self.stroke_width)
if not self.parts_named:
self.name_parts()
self.mouth.set_fill(BLACK, opacity = 1)
self.body.set_fill(self.color, opacity = 1)
self.pupils.set_fill(BLACK, opacity = 1)
self.eyes.set_fill(WHITE, opacity = 1)
return self
def highlight(self, color):
self.body.set_fill(color)
return self
def move_to(self, destination):
self.shift(destination-self.get_bottom())
return self
def change_mode(self, mode):
curr_center = self.get_center()
curr_height = self.get_height()
should_be_flipped = self.is_flipped()
if self.is_looking_direction_purposeful:
looking_direction = self.get_looking_direction()
self.__init__(mode)
self.scale_to_fit_height(curr_height)
self.shift(curr_center)
if should_be_flipped ^ self.is_flipped():
self.flip()
if self.is_looking_direction_purposeful:
self.look(looking_direction)
return self
def look(self, direction):
self.is_looking_direction_purposeful = True
x, y = direction[:2]
for pupil, eye in zip(self.pupils.split(), self.eyes.split()):
pupil.move_to(eye, aligned_edge = direction)
#Some hacky nudging is required here
if y > 0 and x != 0: # Look up and to a side
nudge_size = pupil.get_height()/4.
if x > 0:
nudge = nudge_size*(DOWN+LEFT)
else:
nudge = nudge_size*(DOWN+RIGHT)
pupil.shift(nudge)
elif y < 0:
nudge_size = pupil.get_height()/8.
pupil.shift(nudge_size*UP)
return self
def get_looking_direction(self):
return np.sign(np.round(
self.pupils.get_center() - self.eyes.get_center(),
decimals = 2
))
def is_flipped(self):
return self.eyes.submobjects[0].get_center()[0] > \
self.eyes.submobjects[1].get_center()[0]
#.........这里部分代码省略.........
示例5: get_center
# 需要导入模块: from mobject.vectorized_mobject import VMobject [as 别名]
# 或者: from mobject.vectorized_mobject.VMobject import get_center [as 别名]
def get_center(self):
result = VMobject.get_center(self)
if hasattr(self, "center_offset"):
result -= self.center_offset
return result
示例6: NumberPlane
# 需要导入模块: from mobject.vectorized_mobject import VMobject [as 别名]
# 或者: from mobject.vectorized_mobject.VMobject import get_center [as 别名]
class NumberPlane(VMobject):
CONFIG = {
"color" : BLUE_D,
"secondary_color" : BLUE_E,
"axes_color" : WHITE,
"secondary_stroke_width" : 1,
"x_radius": SPACE_WIDTH,
"y_radius": SPACE_HEIGHT,
"space_unit_to_x_unit" : 1,
"space_unit_to_y_unit" : 1,
"x_line_frequency" : 1,
"y_line_frequency" : 1,
"secondary_line_ratio" : 1,
"written_coordinate_height" : 0.2,
"written_coordinate_nudge" : 0.1*(DOWN+RIGHT),
"num_pair_at_center" : (0, 0),
"propogate_style_to_family" : False,
}
def generate_points(self):
self.axes = VMobject()
self.main_lines = VMobject()
self.secondary_lines = VMobject()
tuples = [
(
self.x_radius,
self.x_line_frequency,
self.y_radius*DOWN,
self.y_radius*UP,
RIGHT
),
(
self.y_radius,
self.y_line_frequency,
self.x_radius*LEFT,
self.x_radius*RIGHT,
UP,
),
]
for radius, freq, start, end, unit in tuples:
main_range = np.arange(0, radius, freq)
step = freq/float(freq + self.secondary_line_ratio)
for v in np.arange(0, radius, step):
line1 = Line(start+v*unit, end+v*unit)
line2 = Line(start-v*unit, end-v*unit)
if v == 0:
self.axes.add(line1)
elif v in main_range:
self.main_lines.add(line1, line2)
else:
self.secondary_lines.add(line1, line2)
self.add(self.axes, self.main_lines, self.secondary_lines)
self.stretch(self.space_unit_to_x_unit, 0)
self.stretch(self.space_unit_to_y_unit, 1)
#Put x_axis before y_axis
y_axis, x_axis = self.axes.split()
self.axes = VMobject(x_axis, y_axis)
def init_colors(self):
VMobject.init_colors(self)
self.axes.set_stroke(self.axes_color, self.stroke_width)
self.main_lines.set_stroke(self.color, self.stroke_width)
self.secondary_lines.set_stroke(
self.secondary_color, self.secondary_stroke_width
)
return self
def get_center_point(self):
return self.num_pair_to_point(self.num_pair_at_center)
def num_pair_to_point(self, pair):
pair = np.array(pair) + self.num_pair_at_center
result = self.axes.get_center()
result[0] += pair[0]*self.space_unit_to_x_unit
result[1] += pair[1]*self.space_unit_to_y_unit
return result
def point_to_num_pair(self, point):
new_point = point-self.get_center()
center_x, center_y = self.num_pair_at_center
x = center_x + point[0]/self.space_unit_to_x_unit
y = center_y + point[1]/self.space_unit_to_y_unit
return x, y
def get_coordinate_labels(self, x_vals = None, y_vals = None):
result = []
if x_vals == None and y_vals == None:
x_vals = range(-int(self.x_radius), int(self.x_radius))
y_vals = range(-int(self.y_radius), int(self.y_radius))
for index, vals in enumerate([x_vals, y_vals]):
num_pair = [0, 0]
for val in vals:
num_pair[index] = val
point = self.num_pair_to_point(num_pair)
num = TexMobject(str(val))
num.scale_to_fit_height(
self.written_coordinate_height
)
num.shift(
point-num.get_corner(UP+LEFT),
#.........这里部分代码省略.........