当前位置: 首页>>代码示例>>Python>>正文


Python PCAModel.variance方法代码示例

本文整理汇总了Python中menpo.model.PCAModel.variance方法的典型用法代码示例。如果您正苦于以下问题:Python PCAModel.variance方法的具体用法?Python PCAModel.variance怎么用?Python PCAModel.variance使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在menpo.model.PCAModel的用法示例。


在下文中一共展示了PCAModel.variance方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_pca_init_from_covariance

# 需要导入模块: from menpo.model import PCAModel [as 别名]
# 或者: from menpo.model.PCAModel import variance [as 别名]
def test_pca_init_from_covariance():
    n_samples = 30
    n_features = 10
    n_dims = 2
    centre_values = [True, False]
    for centre in centre_values:
        # generate samples list and convert it to nd.array
        samples = [PointCloud(np.random.randn(n_features, n_dims))
                   for _ in range(n_samples)]
        data, template = as_matrix(samples, return_template=True)
        # compute covariance matrix and mean
        if centre:
            mean_vector = np.mean(data, axis=0)
            mean = template.from_vector(mean_vector)
            X = data - mean_vector
            C = np.dot(X.T, X) / (n_samples - 1)
        else:
            mean = samples[0]
            C = np.dot(data.T, data) / (n_samples - 1)
        # create the 2 pca models
        pca1 = PCAModel.init_from_covariance_matrix(C, mean,
                                                    centred=centre,
                                                    n_samples=n_samples)
        pca2 = PCAModel(samples, centre=centre)
        # compare them
        assert_array_almost_equal(pca1.component_vector(0, with_mean=False),
                                  pca2.component_vector(0, with_mean=False))
        assert_array_almost_equal(pca1.component(7).as_vector(),
                                  pca2.component(7).as_vector())
        assert_array_almost_equal(pca1.components, pca2.components)
        assert_array_almost_equal(pca1.eigenvalues, pca2.eigenvalues)
        assert_array_almost_equal(pca1.eigenvalues_cumulative_ratio(),
                                  pca2.eigenvalues_cumulative_ratio())
        assert_array_almost_equal(pca1.eigenvalues_ratio(),
                                  pca2.eigenvalues_ratio())
        weights = np.random.randn(pca1.n_active_components)
        assert_array_almost_equal(pca1.instance(weights).as_vector(),
                                  pca2.instance(weights).as_vector())
        weights2 = np.random.randn(pca1.n_active_components - 4)
        assert_array_almost_equal(pca1.instance_vector(weights2),
                                  pca2.instance_vector(weights2))
        assert_array_almost_equal(pca1.mean().as_vector(),
                                  pca2.mean().as_vector())
        assert_array_almost_equal(pca1.mean_vector,
                                  pca2.mean_vector)
        assert(pca1.n_active_components == pca2.n_active_components)
        assert(pca1.n_components == pca2.n_components)
        assert(pca1.n_features == pca2.n_features)
        assert(pca1.n_samples == pca2.n_samples)
        assert(pca1.noise_variance() == pca2.noise_variance())
        assert(pca1.noise_variance_ratio() == pca2.noise_variance_ratio())
        assert_almost_equal(pca1.variance(), pca2.variance())
        assert_almost_equal(pca1.variance_ratio(), pca2.variance_ratio())
        assert_array_almost_equal(pca1.whitened_components(),
                                  pca2.whitened_components())
开发者ID:kritsong,项目名称:menpo,代码行数:57,代码来源:test_model.py

示例2: test_pca_variance

# 需要导入模块: from menpo.model import PCAModel [as 别名]
# 或者: from menpo.model.PCAModel import variance [as 别名]
def test_pca_variance():
    samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
    model = PCAModel(samples)
    # kept variance must be equal to total variance
    assert_equal(model.variance(), model.original_variance())
    # kept variance ratio must be 1.0
    assert_equal(model.variance_ratio(), 1.0)
    # noise variance must be 0.0
    assert_equal(model.noise_variance(), 0.0)
    # noise variance ratio must be also 0.0
    assert_equal(model.noise_variance_ratio(), 0.0)
开发者ID:kritsong,项目名称:menpo,代码行数:13,代码来源:test_model.py

示例3: test_pca_variance_after_trim

# 需要导入模块: from menpo.model import PCAModel [as 别名]
# 或者: from menpo.model.PCAModel import variance [as 别名]
def test_pca_variance_after_trim():
    samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
    model = PCAModel(samples)
    # set number of active components
    model.trim_components(5)
    # kept variance must be smaller than total variance
    assert(model.variance() < model.original_variance())
    # kept variance ratio must be smaller than 1.0
    assert(model.variance_ratio() < 1.0)
    # noise variance must be bigger than 0.0
    assert(model.noise_variance() > 0.0)
    # noise variance ratio must also be bigger than 0.0
    assert(model.noise_variance_ratio() > 0.0)
    # inverse noise variance is computable
    assert(model.inverse_noise_variance() == 1 / model.noise_variance())
开发者ID:OlivierML,项目名称:menpo,代码行数:17,代码来源:test_model.py


注:本文中的menpo.model.PCAModel.variance方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。