本文整理汇总了Python中menpo.model.PCAModel类的典型用法代码示例。如果您正苦于以下问题:Python PCAModel类的具体用法?Python PCAModel怎么用?Python PCAModel使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了PCAModel类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _build_shape_model
def _build_shape_model(cls, shapes, max_components):
r"""
Builds a shape model given a set of shapes.
Parameters
----------
shapes: list of :map:`PointCloud`
The set of shapes from which to build the model.
max_components: None or int or float
Specifies the number of components of the trained shape model.
If int, it specifies the exact number of components to be retained.
If float, it specifies the percentage of variance to be retained.
If None, all the available components are kept (100% of variance).
Returns
-------
shape_model: :class:`menpo.model.pca`
The PCA shape model.
"""
# centralize shapes
centered_shapes = [Translation(-s.centre()).apply(s) for s in shapes]
# align centralized shape using Procrustes Analysis
gpa = GeneralizedProcrustesAnalysis(centered_shapes)
aligned_shapes = [s.aligned_source() for s in gpa.transforms]
# build shape model
shape_model = PCAModel(aligned_shapes)
if max_components is not None:
# trim shape model if required
shape_model.trim_components(max_components)
return shape_model
示例2: test_pca_trim
def test_pca_trim():
samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
model = PCAModel(samples)
# trim components
model.trim_components(5)
# number of active components should be the same as number of components
assert_equal(model.n_active_components, model.n_components)
示例3: _build_shape_model
def _build_shape_model(shapes, max_components):
r"""
Builds a shape model given a set of shapes.
Parameters
----------
shapes: list of :map:`PointCloud`
The set of shapes from which to build the model.
max_components: None or int or float
Specifies the number of components of the trained shape model.
If int, it specifies the exact number of components to be retained.
If float, it specifies the percentage of variance to be retained.
If None, all the available components are kept (100% of variance).
Returns
-------
shape_model: :class:`menpo.model.pca`
The PCA shape model.
"""
# build shape model
shape_model = PCAModel(shapes)
if max_components is not None:
# trim shape model if required
shape_model.trim_components(max_components)
return shape_model
示例4: test_pca_orthogonalize_against
def test_pca_orthogonalize_against():
pca_samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
pca_model = PCAModel(pca_samples)
lm_samples = np.asarray([np.random.randn(10) for _ in range(4)])
lm_model = LinearModel(np.asarray(lm_samples))
# orthogonalize
pca_model.orthonormalize_against_inplace(lm_model)
# number of active components must remain the same
assert_equal(pca_model.n_active_components, 6)
示例5: test_pca_increment_noncentred
def test_pca_increment_noncentred():
pca_samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
ipca_model = PCAModel(pca_samples[:3], centre=False)
ipca_model.increment(pca_samples[3:6])
ipca_model.increment(pca_samples[6:])
bpca_model = PCAModel(pca_samples, centre=False)
assert_almost_equal(np.abs(ipca_model.components),
np.abs(bpca_model.components))
assert_almost_equal(ipca_model.eigenvalues, bpca_model.eigenvalues)
assert_almost_equal(ipca_model.mean_vector, bpca_model.mean_vector)
示例6: __init__
def __init__(self, data, max_n_components=None):
if isinstance(data, PCAModel):
shape_model = data
else:
aligned_shapes = align_shapes(data)
shape_model = PCAModel(aligned_shapes)
if max_n_components is not None:
shape_model.trim_components(max_n_components)
super(PDM, self).__init__(shape_model)
# Default target is the mean
self._target = self.model.mean()
示例7: test_pca_n_active_components_too_many
def test_pca_n_active_components_too_many():
samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
model = PCAModel(samples)
# too many components
model.n_active_components = 100
assert_equal(model.n_active_components, 9)
# reset too smaller number of components
model.n_active_components = 5
assert_equal(model.n_active_components, 5)
# reset to too many components
model.n_active_components = 100
assert_equal(model.n_active_components, 9)
示例8: test_pca_variance_after_trim
def test_pca_variance_after_trim():
samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
model = PCAModel(samples)
# set number of active components
model.trim_components(5)
# kept variance must be smaller than total variance
assert(model.variance() < model.original_variance())
# kept variance ratio must be smaller than 1.0
assert(model.variance_ratio() < 1.0)
# noise variance must be bigger than 0.0
assert(model.noise_variance() > 0.0)
# noise variance ratio must also be bigger than 0.0
assert(model.noise_variance_ratio() > 0.0)
# inverse noise variance is computable
assert(model.inverse_noise_variance() == 1 / model.noise_variance())
示例9: _build_appearance_model_full
def _build_appearance_model_full(all_patches, n_appearance_parameters,
level_str, verbose):
# build appearance model
if verbose:
print_dynamic('{}Training appearance distribution'.format(level_str))
# apply pca
appearance_model = PCAModel(all_patches)
# trim components
if n_appearance_parameters is not None:
appearance_model.trim_components(n_appearance_parameters)
# get mean appearance vector
app_mean = appearance_model.mean().as_vector()
# compute covariance matrix
app_cov = appearance_model.components.T.dot(np.diag(1/appearance_model.eigenvalues)).dot(appearance_model.components)
return app_mean, app_cov
示例10: _build_appearance_model_full
def _build_appearance_model_full(all_patches, n_appearance_parameters,
patches_len, level_str, verbose):
# build appearance model
if verbose:
print_dynamic('{}Training appearance distribution'.format(level_str))
# get mean appearance vector
n_images = len(all_patches)
tmp = np.empty((patches_len, n_images))
for c, i in enumerate(all_patches):
tmp[..., c] = vectorize_patches_image(i)
app_mean = np.mean(tmp, axis=1)
# apply pca
appearance_model = PCAModel(all_patches)
# trim components
if n_appearance_parameters is not None:
appearance_model.trim_components(n_appearance_parameters)
# compute covariance matrix
app_cov = appearance_model.components.T.dot(np.diag(1/appearance_model.eigenvalues)).dot(appearance_model.components)
return app_mean, app_cov
示例11: _build_appearance_model_full_yorgos
def _build_appearance_model_full_yorgos(all_patches, n_appearance_parameters,
patches_image_shape, level_str, verbose):
# build appearance model
if verbose:
print_dynamic('{}Training appearance distribution'.format(level_str))
# get mean appearance vector
n_images = len(all_patches)
tmp = np.empty(patches_image_shape + (n_images,))
for c, i in enumerate(all_patches):
tmp[..., c] = i.pixels
app_mean = np.mean(tmp, axis=-1)
# apply pca
appearance_model = PCAModel(all_patches)
# trim components
if n_appearance_parameters is not None:
appearance_model.trim_components(n_appearance_parameters)
# compute covariance matrix
app_cov = np.eye(appearance_model.n_features, appearance_model.n_features) - appearance_model.components.T.dot(appearance_model.components)
return app_mean, app_cov
示例12: test_pca_variance
def test_pca_variance():
samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
model = PCAModel(samples)
# kept variance must be equal to total variance
assert_equal(model.variance(), model.original_variance())
# kept variance ratio must be 1.0
assert_equal(model.variance_ratio(), 1.0)
# noise variance must be 0.0
assert_equal(model.noise_variance(), 0.0)
# noise variance ratio must be also 0.0
assert_equal(model.noise_variance_ratio(), 0.0)
示例13: test_pca_trim_variance_limit
def test_pca_trim_variance_limit():
samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
model = PCAModel(samples)
# impossible to keep more than 1.0 ratio variance
model.trim_components(2.5)
示例14: aam_builder
#.........这里部分代码省略.........
shapes = [i.landmarks[group][label].lms for i in images]
reference_shape = mean_pointcloud(shapes)
if diagonal_range:
x, y = reference_shape.range()
scale = diagonal_range / np.sqrt(x**2 + y**2)
Scale(scale, reference_shape.n_dims).apply_inplace(reference_shape)
images = [i.rescale_to_reference_shape(reference_shape, group=group,
label=label,
interpolator=interpolator)
for i in images]
if scaled_reference_frames:
print '- Setting gaussian smoothing generators'
generator = [i.smoothing_pyramid(n_levels=n_levels,
downscale=downscale)
for i in images]
else:
print '- Setting gaussian pyramid generators'
generator = [i.gaussian_pyramid(n_levels=n_levels,
downscale=downscale)
for i in images]
print '- Building model pyramids'
shape_models = []
appearance_models = []
# for each level
for j in np.arange(n_levels):
print ' - Level {}'.format(j)
print ' - Computing feature_type'
images = [compute_features(g.next(), feature_type) for g in generator]
# extract potentially rescaled shapes
shapes = [i.landmarks[group][label].lms for i in images]
if scaled_reference_frames or j == 0:
print ' - Building shape model'
if j != 0:
shapes = [Scale(1/downscale, n_dims=shapes[0].n_dims).apply(s)
for s in shapes]
# centralize shapes
centered_shapes = [Translation(-s.centre).apply(s) for s in shapes]
# align centralized shape using Procrustes Analysis
gpa = GeneralizedProcrustesAnalysis(centered_shapes)
aligned_shapes = [s.aligned_source for s in gpa.transforms]
# build shape model
shape_model = PCAModel(aligned_shapes)
if max_shape_components is not None:
# trim shape model if required
shape_model.trim_components(max_shape_components)
print ' - Building reference frame'
mean_shape = mean_pointcloud(aligned_shapes)
if patch_size is not None:
# build patch based reference frame
reference_frame = build_patch_reference_frame(
mean_shape, boundary=boundary, patch_size=patch_size)
else:
# build reference frame
reference_frame = build_reference_frame(
mean_shape, boundary=boundary, trilist=trilist)
# add shape model to the list
shape_models.append(shape_model)
print ' - Computing transforms'
transforms = [transform_cls(reference_frame.landmarks['source'].lms,
i.landmarks[group][label].lms)
for i in images]
print ' - Warping images'
images = [i.warp_to(reference_frame.mask, t,
interpolator=interpolator)
for i, t in zip(images, transforms)]
for i in images:
i.landmarks['source'] = reference_frame.landmarks['source']
if patch_size:
for i in images:
i.build_mask_around_landmarks(patch_size, group='source')
else:
for i in images:
i.constrain_mask_to_landmarks(group='source', trilist=trilist)
print ' - Building appearance model'
appearance_model = PCAModel(images)
# trim appearance model if required
if max_appearance_components is not None:
appearance_model.trim_components(max_appearance_components)
# add appearance model to the list
appearance_models.append(appearance_model)
# reverse the list of shape and appearance models so that they are
# ordered from lower to higher resolution
shape_models.reverse()
appearance_models.reverse()
return AAM(shape_models, appearance_models, transform_cls, feature_type,
reference_shape, downscale, patch_size, interpolator)
示例15: test_pca_init_from_covariance
def test_pca_init_from_covariance():
n_samples = 30
n_features = 10
n_dims = 2
centre_values = [True, False]
for centre in centre_values:
# generate samples list and convert it to nd.array
samples = [PointCloud(np.random.randn(n_features, n_dims))
for _ in range(n_samples)]
data, template = as_matrix(samples, return_template=True)
# compute covariance matrix and mean
if centre:
mean_vector = np.mean(data, axis=0)
mean = template.from_vector(mean_vector)
X = data - mean_vector
C = np.dot(X.T, X) / (n_samples - 1)
else:
mean = samples[0]
C = np.dot(data.T, data) / (n_samples - 1)
# create the 2 pca models
pca1 = PCAModel.init_from_covariance_matrix(C, mean,
centred=centre,
n_samples=n_samples)
pca2 = PCAModel(samples, centre=centre)
# compare them
assert_array_almost_equal(pca1.component_vector(0, with_mean=False),
pca2.component_vector(0, with_mean=False))
assert_array_almost_equal(pca1.component(7).as_vector(),
pca2.component(7).as_vector())
assert_array_almost_equal(pca1.components, pca2.components)
assert_array_almost_equal(pca1.eigenvalues, pca2.eigenvalues)
assert_array_almost_equal(pca1.eigenvalues_cumulative_ratio(),
pca2.eigenvalues_cumulative_ratio())
assert_array_almost_equal(pca1.eigenvalues_ratio(),
pca2.eigenvalues_ratio())
weights = np.random.randn(pca1.n_active_components)
assert_array_almost_equal(pca1.instance(weights).as_vector(),
pca2.instance(weights).as_vector())
weights2 = np.random.randn(pca1.n_active_components - 4)
assert_array_almost_equal(pca1.instance_vector(weights2),
pca2.instance_vector(weights2))
assert_array_almost_equal(pca1.mean().as_vector(),
pca2.mean().as_vector())
assert_array_almost_equal(pca1.mean_vector,
pca2.mean_vector)
assert(pca1.n_active_components == pca2.n_active_components)
assert(pca1.n_components == pca2.n_components)
assert(pca1.n_features == pca2.n_features)
assert(pca1.n_samples == pca2.n_samples)
assert(pca1.noise_variance() == pca2.noise_variance())
assert(pca1.noise_variance_ratio() == pca2.noise_variance_ratio())
assert_almost_equal(pca1.variance(), pca2.variance())
assert_almost_equal(pca1.variance_ratio(), pca2.variance_ratio())
assert_array_almost_equal(pca1.whitened_components(),
pca2.whitened_components())