本文整理汇总了Python中menpo.model.PCAModel.n_active_components方法的典型用法代码示例。如果您正苦于以下问题:Python PCAModel.n_active_components方法的具体用法?Python PCAModel.n_active_components怎么用?Python PCAModel.n_active_components使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类menpo.model.PCAModel
的用法示例。
在下文中一共展示了PCAModel.n_active_components方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_pca_n_active_components_too_many
# 需要导入模块: from menpo.model import PCAModel [as 别名]
# 或者: from menpo.model.PCAModel import n_active_components [as 别名]
def test_pca_n_active_components_too_many():
samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
model = PCAModel(samples)
# too many components
model.n_active_components = 100
assert_equal(model.n_active_components, 9)
# reset too smaller number of components
model.n_active_components = 5
assert_equal(model.n_active_components, 5)
# reset to too many components
model.n_active_components = 100
assert_equal(model.n_active_components, 9)
示例2: test_pca_orthogonalize_against_with_less_active_components
# 需要导入模块: from menpo.model import PCAModel [as 别名]
# 或者: from menpo.model.PCAModel import n_active_components [as 别名]
def test_pca_orthogonalize_against_with_less_active_components():
pca_samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
pca_model = PCAModel(pca_samples)
lm_samples = np.asarray([np.random.randn(10) for _ in range(4)])
lm_model = LinearModel(np.asarray(lm_samples))
# set number of active components
pca_model.n_active_components = 5
# orthogonalize
pca_model.orthonormalize_against_inplace(lm_model)
# number of active components must remain the same
assert_equal(pca_model.n_active_components, 5)
示例3: test_pca_variance_after_change_n_active_components
# 需要导入模块: from menpo.model import PCAModel [as 别名]
# 或者: from menpo.model.PCAModel import n_active_components [as 别名]
def test_pca_variance_after_change_n_active_components():
samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
model = PCAModel(samples)
# set number of active components
model.n_active_components = 5
# kept variance must be smaller than total variance
assert(model.variance() < model.original_variance())
# kept variance ratio must be smaller than 1.0
assert(model.variance_ratio() < 1.0)
# noise variance must be bigger than 0.0
assert(model.noise_variance() > 0.0)
# noise variance ratio must also be bigger than 0.0
assert(model.noise_variance_ratio() > 0.0)
# inverse noise variance is computable
assert(model.inverse_noise_variance() == 1/model.noise_variance())
示例4: test_pca_n_active_components_negative
# 需要导入模块: from menpo.model import PCAModel [as 别名]
# 或者: from menpo.model.PCAModel import n_active_components [as 别名]
def test_pca_n_active_components_negative():
samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
model = PCAModel(samples)
# not sufficient components
model.n_active_components = -5
示例5: test_pca_n_active_components
# 需要导入模块: from menpo.model import PCAModel [as 别名]
# 或者: from menpo.model.PCAModel import n_active_components [as 别名]
def test_pca_n_active_components():
samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
model = PCAModel(samples)
# integer
model.n_active_components = 5
assert_equal(model.n_active_components, 5)