当前位置: 首页>>代码示例>>Python>>正文


Python PCAModel.trim_components方法代码示例

本文整理汇总了Python中menpo.model.PCAModel.trim_components方法的典型用法代码示例。如果您正苦于以下问题:Python PCAModel.trim_components方法的具体用法?Python PCAModel.trim_components怎么用?Python PCAModel.trim_components使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在menpo.model.PCAModel的用法示例。


在下文中一共展示了PCAModel.trim_components方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _build_shape_model

# 需要导入模块: from menpo.model import PCAModel [as 别名]
# 或者: from menpo.model.PCAModel import trim_components [as 别名]
def _build_shape_model(shapes, max_components):
    r"""
    Builds a shape model given a set of shapes.

    Parameters
    ----------
    shapes: list of :map:`PointCloud`
        The set of shapes from which to build the model.
    max_components: None or int or float
        Specifies the number of components of the trained shape model.
        If int, it specifies the exact number of components to be retained.
        If float, it specifies the percentage of variance to be retained.
        If None, all the available components are kept (100% of variance).

    Returns
    -------
    shape_model: :class:`menpo.model.pca`
        The PCA shape model.
    """
    # build shape model
    shape_model = PCAModel(shapes)
    if max_components is not None:
        # trim shape model if required
        shape_model.trim_components(max_components)

    return shape_model
开发者ID:VLAM3D,项目名称:antonakoscvpr2015,代码行数:28,代码来源:builder.py

示例2: test_pca_trim

# 需要导入模块: from menpo.model import PCAModel [as 别名]
# 或者: from menpo.model.PCAModel import trim_components [as 别名]
def test_pca_trim():
    samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
    model = PCAModel(samples)
    # trim components
    model.trim_components(5)
    # number of active components should be the same as number of components
    assert_equal(model.n_active_components, model.n_components)
开发者ID:kritsong,项目名称:menpo,代码行数:9,代码来源:test_model.py

示例3: _build_shape_model

# 需要导入模块: from menpo.model import PCAModel [as 别名]
# 或者: from menpo.model.PCAModel import trim_components [as 别名]
    def _build_shape_model(cls, shapes, max_components):
        r"""
        Builds a shape model given a set of shapes.

        Parameters
        ----------
        shapes: list of :map:`PointCloud`
            The set of shapes from which to build the model.
        max_components: None or int or float
            Specifies the number of components of the trained shape model.
            If int, it specifies the exact number of components to be retained.
            If float, it specifies the percentage of variance to be retained.
            If None, all the available components are kept (100% of variance).

        Returns
        -------
        shape_model: :class:`menpo.model.pca`
            The PCA shape model.
        """

        # centralize shapes
        centered_shapes = [Translation(-s.centre()).apply(s) for s in shapes]
        # align centralized shape using Procrustes Analysis
        gpa = GeneralizedProcrustesAnalysis(centered_shapes)
        aligned_shapes = [s.aligned_source() for s in gpa.transforms]
        # build shape model
        shape_model = PCAModel(aligned_shapes)
        if max_components is not None:
            # trim shape model if required
            shape_model.trim_components(max_components)

        return shape_model
开发者ID:VLAM3D,项目名称:alabortcvpr2015,代码行数:34,代码来源:builder.py

示例4: __init__

# 需要导入模块: from menpo.model import PCAModel [as 别名]
# 或者: from menpo.model.PCAModel import trim_components [as 别名]
    def __init__(self, data, max_n_components=None):
        if isinstance(data, PCAModel):
            shape_model = data
        else:
            aligned_shapes = align_shapes(data)
            shape_model = PCAModel(aligned_shapes)

        if max_n_components is not None:
            shape_model.trim_components(max_n_components)
        super(PDM, self).__init__(shape_model)
        # Default target is the mean
        self._target = self.model.mean()
开发者ID:lydonchandra,项目名称:menpofit,代码行数:14,代码来源:modelinstance.py

示例5: test_pca_variance_after_trim

# 需要导入模块: from menpo.model import PCAModel [as 别名]
# 或者: from menpo.model.PCAModel import trim_components [as 别名]
def test_pca_variance_after_trim():
    samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
    model = PCAModel(samples)
    # set number of active components
    model.trim_components(5)
    # kept variance must be smaller than total variance
    assert(model.variance() < model.original_variance())
    # kept variance ratio must be smaller than 1.0
    assert(model.variance_ratio() < 1.0)
    # noise variance must be bigger than 0.0
    assert(model.noise_variance() > 0.0)
    # noise variance ratio must also be bigger than 0.0
    assert(model.noise_variance_ratio() > 0.0)
    # inverse noise variance is computable
    assert(model.inverse_noise_variance() == 1 / model.noise_variance())
开发者ID:OlivierML,项目名称:menpo,代码行数:17,代码来源:test_model.py

示例6: _build_appearance_model_full

# 需要导入模块: from menpo.model import PCAModel [as 别名]
# 或者: from menpo.model.PCAModel import trim_components [as 别名]
def _build_appearance_model_full(all_patches, n_appearance_parameters,
                                 level_str, verbose):
    # build appearance model
    if verbose:
        print_dynamic('{}Training appearance distribution'.format(level_str))

    # apply pca
    appearance_model = PCAModel(all_patches)

    # trim components
    if n_appearance_parameters is not None:
        appearance_model.trim_components(n_appearance_parameters)

    # get mean appearance vector
    app_mean = appearance_model.mean().as_vector()

    # compute covariance matrix
    app_cov = appearance_model.components.T.dot(np.diag(1/appearance_model.eigenvalues)).dot(appearance_model.components)

    return app_mean, app_cov
开发者ID:VLAM3D,项目名称:antonakoscvpr2015,代码行数:22,代码来源:builder.py

示例7: _build_appearance_model_full_yorgos

# 需要导入模块: from menpo.model import PCAModel [as 别名]
# 或者: from menpo.model.PCAModel import trim_components [as 别名]
def _build_appearance_model_full_yorgos(all_patches, n_appearance_parameters,
                                        patches_image_shape, level_str, verbose):
    # build appearance model
    if verbose:
        print_dynamic('{}Training appearance distribution'.format(level_str))

    # get mean appearance vector
    n_images = len(all_patches)
    tmp = np.empty(patches_image_shape + (n_images,))
    for c, i in enumerate(all_patches):
        tmp[..., c] = i.pixels
    app_mean = np.mean(tmp, axis=-1)

    # apply pca
    appearance_model = PCAModel(all_patches)

    # trim components
    if n_appearance_parameters is not None:
        appearance_model.trim_components(n_appearance_parameters)

    # compute covariance matrix
    app_cov = np.eye(appearance_model.n_features, appearance_model.n_features) - appearance_model.components.T.dot(appearance_model.components)

    return app_mean, app_cov
开发者ID:nontas,项目名称:antonakoscvpr2015,代码行数:26,代码来源:builder.py

示例8: _build_appearance_model_full

# 需要导入模块: from menpo.model import PCAModel [as 别名]
# 或者: from menpo.model.PCAModel import trim_components [as 别名]
def _build_appearance_model_full(all_patches, n_appearance_parameters,
                                 patches_len, level_str, verbose):
    # build appearance model
    if verbose:
        print_dynamic('{}Training appearance distribution'.format(level_str))

    # get mean appearance vector
    n_images = len(all_patches)
    tmp = np.empty((patches_len, n_images))
    for c, i in enumerate(all_patches):
        tmp[..., c] = vectorize_patches_image(i)
    app_mean = np.mean(tmp, axis=1)

    # apply pca
    appearance_model = PCAModel(all_patches)

    # trim components
    if n_appearance_parameters is not None:
        appearance_model.trim_components(n_appearance_parameters)

    # compute covariance matrix
    app_cov = appearance_model.components.T.dot(np.diag(1/appearance_model.eigenvalues)).dot(appearance_model.components)

    return app_mean, app_cov
开发者ID:nontas,项目名称:antonakoscvpr2015,代码行数:26,代码来源:builder.py

示例9: test_pca_trim_negative_float

# 需要导入模块: from menpo.model import PCAModel [as 别名]
# 或者: from menpo.model.PCAModel import trim_components [as 别名]
def test_pca_trim_negative_float():
    samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
    model = PCAModel(samples)
    # no negative number of components
    model.trim_components(-2)
开发者ID:kritsong,项目名称:menpo,代码行数:7,代码来源:test_model.py

示例10: build

# 需要导入模块: from menpo.model import PCAModel [as 别名]
# 或者: from menpo.model.PCAModel import trim_components [as 别名]

#.........这里部分代码省略.........
                print_dynamic('- Building model\n')

        shape_models = []
        appearance_models = []
        # for each pyramid level (high --> low)
        for j in range(self.n_levels):
            # since models are built from highest to lowest level, the
            # parameters in form of list need to use a reversed index
            rj = self.n_levels - j - 1

            if verbose:
                level_str = '  - '
                if self.n_levels > 1:
                    level_str = '  - Level {}: '.format(j + 1)

            # get feature images of current level
            feature_images = []
            for c, g in enumerate(generators):
                if verbose:
                    print_dynamic(
                        '{}Computing feature space/rescaling - {}'.format(
                        level_str,
                        progress_bar_str((c + 1.) / len(generators),
                                         show_bar=False)))
                feature_images.append(next(g))

            # extract potentially rescaled shapes
            shapes = [i.landmarks[group][label] for i in feature_images]

            # define shapes that will be used for training
            if j == 0:
                original_shapes = shapes
                train_shapes = shapes
            else:
                if self.scaled_shape_models:
                    train_shapes = shapes
                else:
                    train_shapes = original_shapes

            # train shape model and find reference frame
            if verbose:
                print_dynamic('{}Building shape model'.format(level_str))
            shape_model = build_shape_model(
                train_shapes, self.max_shape_components[rj])
            reference_frame = self._build_reference_frame(shape_model.mean())

            # add shape model to the list
            shape_models.append(shape_model)

            # compute transforms
            if verbose:
                print_dynamic('{}Computing transforms'.format(level_str))


            # Create a dummy initial transform
            s_to_t_transform = self.transform(
                reference_frame.landmarks['source'].lms,
                reference_frame.landmarks['source'].lms)

            # warp images to reference frame
            warped_images = []
            for c, i in enumerate(feature_images):
                if verbose:
                    print_dynamic('{}Warping images - {}'.format(
                        level_str,
                        progress_bar_str(float(c + 1) / len(feature_images),
                                         show_bar=False)))
                # Setting the target can be significantly faster for transforms
                # such as CachedPiecewiseAffine
                s_to_t_transform.set_target(i.landmarks[group][label])
                warped_images.append(i.warp_to_mask(reference_frame.mask,
                                                    s_to_t_transform))

            # attach reference_frame to images' source shape
            for i in warped_images:
                i.landmarks['source'] = reference_frame.landmarks['source']

            # build appearance model
            if verbose:
                print_dynamic('{}Building appearance model'.format(level_str))
            appearance_model = PCAModel(warped_images)
            # trim appearance model if required
            if self.max_appearance_components[rj] is not None:
                appearance_model.trim_components(
                    self.max_appearance_components[rj])

            # add appearance model to the list
            appearance_models.append(appearance_model)

            if verbose:
                print_dynamic('{}Done\n'.format(level_str))

        # reverse the list of shape and appearance models so that they are
        # ordered from lower to higher resolution
        shape_models.reverse()
        appearance_models.reverse()
        n_training_images = len(images)

        return self._build_aam(shape_models, appearance_models,
                               n_training_images)
开发者ID:OlivierML,项目名称:menpofit,代码行数:104,代码来源:builder.py

示例11: build

# 需要导入模块: from menpo.model import PCAModel [as 别名]
# 或者: from menpo.model.PCAModel import trim_components [as 别名]
    def build(self, images, group=None, label=None, verbose=False, **kwargs):
        # compute reference shape
        reference_shape = self._compute_reference_shape(images, group, label,
                                                        verbose)
        # normalize images
        images = self._normalize_images(images, group, label, reference_shape,
                                        verbose)

        # build models at each scale
        if verbose:
            print_dynamic('- Building models\n')
        shape_models = []
        appearance_models = []
        classifiers = []
        # for each pyramid level (high --> low)
        for j, s in enumerate(self.scales):
            if verbose:
                if len(self.scales) > 1:
                    level_str = '  - Level {}: '.format(j)
                else:
                    level_str = '  - '

            # obtain image representation
            if j == 0:
                # compute features at highest level
                feature_images = self._compute_features(images, level_str,
                                                        verbose)
                level_images = feature_images
            elif self.scale_features:
                # scale features at other levels
                level_images = self._scale_images(feature_images, s,
                                                  level_str, verbose)
            else:
                # scale images and compute features at other levels
                scaled_images = self._scale_images(images, s, level_str,
                                                   verbose)
                level_images = self._compute_features(scaled_images,
                                                      level_str, verbose)

            # extract potentially rescaled shapes ath highest level
            level_shapes = [i.landmarks[group][label]
                            for i in level_images]

            # obtain shape representation
            if j == 0 or self.scale_shapes:
                # obtain shape model
                if verbose:
                    print_dynamic('{}Building shape model'.format(level_str))
                shape_model = self._build_shape_model(
                    level_shapes, self.max_shape_components)
                # add shape model to the list
                shape_models.append(shape_model)
            else:
                # copy precious shape model and add it to the list
                shape_models.append(deepcopy(shape_model))

            # obtain warped images
            warped_images = self._warp_images(level_images, level_shapes,
                                              shape_model.mean(), level_str,
                                              verbose)

            # obtain appearance model
            if verbose:
                print_dynamic('{}Building appearance model'.format(level_str))
            appearance_model = PCAModel(warped_images)
            # trim appearance model if required
            if self.max_appearance_components is not None:
                appearance_model.trim_components(
                    self.max_appearance_components)
            # add appearance model to the list
            appearance_models.append(appearance_model)

            if isinstance(self, GlobalUnifiedBuilder):
                # obtain parts images
                parts_images = self._parts_images(level_images, level_shapes,
                                                  level_str, verbose)
            else:
                # parts images are warped images
                parts_images = warped_images

            # build desired responses
            mvn = multivariate_normal(mean=np.zeros(2), cov=self.covariance)
            grid = build_sampling_grid(self.parts_shape)
            Y = [mvn.pdf(grid + offset) for offset in self.offsets]

            # build classifiers
            n_landmarks = level_shapes[0].n_points
            level_classifiers = []
            for l in range(n_landmarks):
                if verbose:
                    print_dynamic('{}Building classifiers - {}'.format(
                        level_str,
                        progress_bar_str((l + 1.) / n_landmarks,
                                         show_bar=False)))

                X = [i.pixels[l] for i in parts_images]

                clf = self.classifier(X, Y, **kwargs)
                level_classifiers.append(clf)

#.........这里部分代码省略.........
开发者ID:VLAM3D,项目名称:alabortcvpr2015,代码行数:103,代码来源:builder.py

示例12: aam_builder

# 需要导入模块: from menpo.model import PCAModel [as 别名]
# 或者: from menpo.model.PCAModel import trim_components [as 别名]

#.........这里部分代码省略.........
    shapes = [i.landmarks[group][label].lms for i in images]
    reference_shape = mean_pointcloud(shapes)
    if diagonal_range:
        x, y = reference_shape.range()
        scale = diagonal_range / np.sqrt(x**2 + y**2)
        Scale(scale, reference_shape.n_dims).apply_inplace(reference_shape)
    images = [i.rescale_to_reference_shape(reference_shape, group=group,
                                           label=label,
                                           interpolator=interpolator)
              for i in images]

    if scaled_reference_frames:
        print '- Setting gaussian smoothing generators'
        generator = [i.smoothing_pyramid(n_levels=n_levels,
                                         downscale=downscale)
                     for i in images]
    else:
        print '- Setting gaussian pyramid generators'
        generator = [i.gaussian_pyramid(n_levels=n_levels,
                                        downscale=downscale)
                     for i in images]

    print '- Building model pyramids'
    shape_models = []
    appearance_models = []
    # for each level
    for j in np.arange(n_levels):
        print ' - Level {}'.format(j)

        print '  - Computing feature_type'
        images = [compute_features(g.next(), feature_type) for g in generator]
        # extract potentially rescaled shapes
        shapes = [i.landmarks[group][label].lms for i in images]

        if scaled_reference_frames or j == 0:
            print '  - Building shape model'
            if j != 0:
                shapes = [Scale(1/downscale, n_dims=shapes[0].n_dims).apply(s)
                          for s in shapes]
            # centralize shapes
            centered_shapes = [Translation(-s.centre).apply(s) for s in shapes]
            # align centralized shape using Procrustes Analysis
            gpa = GeneralizedProcrustesAnalysis(centered_shapes)
            aligned_shapes = [s.aligned_source for s in gpa.transforms]

            # build shape model
            shape_model = PCAModel(aligned_shapes)
            if max_shape_components is not None:
                # trim shape model if required
                shape_model.trim_components(max_shape_components)

            print '  - Building reference frame'
            mean_shape = mean_pointcloud(aligned_shapes)
            if patch_size is not None:
                # build patch based reference frame
                reference_frame = build_patch_reference_frame(
                    mean_shape, boundary=boundary, patch_size=patch_size)
            else:
                # build reference frame
                reference_frame = build_reference_frame(
                    mean_shape, boundary=boundary, trilist=trilist)

        # add shape model to the list
        shape_models.append(shape_model)

        print '  - Computing transforms'
        transforms = [transform_cls(reference_frame.landmarks['source'].lms,
                                    i.landmarks[group][label].lms)
                      for i in images]

        print '  - Warping images'
        images = [i.warp_to(reference_frame.mask, t,
                            interpolator=interpolator)
                  for i, t in zip(images, transforms)]

        for i in images:
            i.landmarks['source'] = reference_frame.landmarks['source']
        if patch_size:
            for i in images:
                i.build_mask_around_landmarks(patch_size, group='source')
        else:
            for i in images:
                i.constrain_mask_to_landmarks(group='source', trilist=trilist)

        print '  - Building appearance model'
        appearance_model = PCAModel(images)
        # trim appearance model if required
        if max_appearance_components is not None:
            appearance_model.trim_components(max_appearance_components)

        # add appearance model to the list
        appearance_models.append(appearance_model)

    # reverse the list of shape and appearance models so that they are
    # ordered from lower to higher resolution
    shape_models.reverse()
    appearance_models.reverse()

    return AAM(shape_models, appearance_models, transform_cls, feature_type,
               reference_shape, downscale, patch_size, interpolator)
开发者ID:ikassi,项目名称:menpo,代码行数:104,代码来源:base.py

示例13: build

# 需要导入模块: from menpo.model import PCAModel [as 别名]
# 或者: from menpo.model.PCAModel import trim_components [as 别名]
    def build(self, images, group=None, label=None, verbose=False):
        # compute reference shape
        reference_shape = self._compute_reference_shape(images, group, label,
                                                        verbose)
        # normalize images
        images = self._normalize_images(images, group, label, reference_shape,
                                        verbose)

        # build models at each scale
        if verbose:
            print_dynamic('- Building models\n')
        shape_models = []
        appearance_models = []
        # for each pyramid level (high --> low)
        for j, s in enumerate(self.scales):
            if verbose:
                if len(self.scales) > 1:
                    level_str = '  - Level {}: '.format(j)
                else:
                    level_str = '  - '

            # obtain image representation
            if j == 0:
                # compute features at highest level
                feature_images = self._compute_features(images, level_str,
                                                        verbose)
                level_images = feature_images
            elif self.scale_features:
                # scale features at other levels
                level_images = self._scale_images(feature_images, s,
                                                  level_str, verbose)
            else:
                # scale images and compute features at other levels
                scaled_images = self._scale_images(images, s, level_str,
                                                   verbose)
                level_images = self._compute_features(scaled_images,
                                                      level_str, verbose)

            # extract potentially rescaled shapes ath highest level
            level_shapes = [i.landmarks[group][label]
                            for i in level_images]

            # obtain shape representation
            if j == 0 or self.scale_shapes:
                # obtain shape model
                if verbose:
                    print_dynamic('{}Building shape model'.format(level_str))
                shape_model = self._build_shape_model(
                    level_shapes, self.max_shape_components)
                # add shape model to the list
                shape_models.append(shape_model)
            else:
                # copy precious shape model and add it to the list
                shape_models.append(deepcopy(shape_model))

            # obtain warped images
            warped_images = self._warp_images(level_images, level_shapes,
                                              shape_model.mean, level_str,
                                              verbose)

            # obtain appearance model
            if verbose:
                print_dynamic('{}Building appearance model'.format(level_str))
            appearance_model = PCAModel(warped_images)
            # trim appearance model if required
            if self.max_appearance_components is not None:
                appearance_model.trim_components(
                    self.max_appearance_components)
            # add appearance model to the list
            appearance_models.append(appearance_model)

            if verbose:
                print_dynamic('{}Done\n'.format(level_str))

        # reverse the list of shape and appearance models so that they are
        # ordered from lower to higher resolution
        shape_models.reverse()
        appearance_models.reverse()
        self.scales.reverse()

        aam = self._build_aam(shape_models, appearance_models, reference_shape)

        return aam
开发者ID:jalabort,项目名称:ijcv-2014-aam,代码行数:85,代码来源:builder.py

示例14: _train

# 需要导入模块: from menpo.model import PCAModel [as 别名]
# 或者: from menpo.model.PCAModel import trim_components [as 别名]
    def _train(self, images, group=None, verbose=False):
        checks.check_landmark_trilist(images[0], self.transform, group=group)
        self.reference_shape = compute_reference_shape(
            [i.landmarks[group] for i in images],
            self.diagonal, verbose=verbose)
        
        # normalize images
        images = rescale_images_to_reference_shape(
            images, group, self.reference_shape, verbose=verbose)
        if self.sigma:
            images = [fsmooth(i, self.sigma) for i in images]

        # Build models at each scale
        if verbose:
            print_dynamic('- Building models\n')

        feature_images = []
        # for each scale (low --> high)
        for j in range(self.n_scales):
            if verbose:
                if len(self.scales) > 1:
                    scale_prefix = '  - Scale {}: '.format(j)
                else:
                    scale_prefix = '  - '
            else:
                scale_prefix = None

            # Handle holistic features
            if j == 0 and self.holistic_features[j] == no_op:
                # Saves a lot of memory
                feature_images = images
            elif j == 0 or self.holistic_features[j] is not self.holistic_features[j - 1]:
                # Compute features only if this is the first pass through
                # the loop or the features at this scale are different from
                # the features at the previous scale
                feature_images = compute_features(images,
                                                  self.holistic_features[j],
                                                  prefix=scale_prefix,
                                                  verbose=verbose)
            # handle scales
            if self.scales[j] != 1:
                # Scale feature images only if scale is different than 1
                scaled_images = scale_images(feature_images, self.scales[j],
                                             prefix=scale_prefix,
                                             verbose=verbose)
            else:
                scaled_images = feature_images

            # Extract potentially rescaled shapes
            scale_shapes = [i.landmarks[group] for i in scaled_images]

            # Build the shape model
            if verbose:
                print_dynamic('{}Building shape model'.format(scale_prefix))

            shape_model = self._build_shape_model(scale_shapes, j)
            self.shape_models.append(shape_model)

            # Obtain warped images - we use a scaled version of the
            # reference shape, computed here. This is because the mean
            # moves when we are incrementing, and we need a consistent
            # reference frame.
            scaled_reference_shape = Scale(self.scales[j], n_dims=2).apply(
                self.reference_shape)
            warped_images = self._warp_images(scaled_images, scale_shapes,
                                              scaled_reference_shape,
                                              j, scale_prefix, verbose)

            # obtain appearance model
            if verbose:
                print_dynamic('{}Building appearance model'.format(
                    scale_prefix))

            appearance_model = PCAModel(warped_images)
            # trim appearance model if required
            if self.max_appearance_components[j] is not None:
                appearance_model.trim_components(
                    self.max_appearance_components[j])
            # add appearance model to the list
            self.appearance_models.append(appearance_model)

            expert_ensemble = self.expert_ensemble_cls[j](
                images=scaled_images, shapes=scale_shapes,
                patch_shape=self.patch_shape[j],
                patch_normalisation=self.patch_normalisation,
                cosine_mask=self.cosine_mask,
                context_shape=self.context_shape[j],
                sample_offsets=self.sample_offsets,
                prefix=scale_prefix, verbose=verbose)
            self.expert_ensembles.append(expert_ensemble)

            if verbose:
                print_dynamic('{}Done\n'.format(scale_prefix))
开发者ID:jabooth,项目名称:menpofit,代码行数:95,代码来源:base.py

示例15: test_pca_trim_variance_limit

# 需要导入模块: from menpo.model import PCAModel [as 别名]
# 或者: from menpo.model.PCAModel import trim_components [as 别名]
def test_pca_trim_variance_limit():
    samples = [PointCloud(np.random.randn(10)) for _ in range(10)]
    model = PCAModel(samples)
    # impossible to keep more than 1.0 ratio variance
    model.trim_components(2.5)
开发者ID:OlivierML,项目名称:menpo,代码行数:7,代码来源:test_model.py


注:本文中的menpo.model.PCAModel.trim_components方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。