当前位置: 首页>>代码示例>>Python>>正文


Python Matrix.mathAt方法代码示例

本文整理汇总了Python中matrix.Matrix.mathAt方法的典型用法代码示例。如果您正苦于以下问题:Python Matrix.mathAt方法的具体用法?Python Matrix.mathAt怎么用?Python Matrix.mathAt使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在matrix.Matrix的用法示例。


在下文中一共展示了Matrix.mathAt方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: ConjugatedGradient

# 需要导入模块: from matrix import Matrix [as 别名]
# 或者: from matrix.Matrix import mathAt [as 别名]
def ConjugatedGradient(m,A,a,epsilon,p):
    '''
    The following 5 lines are not part of the algorithm per se. They are helpers.
    '''
    VECTOR = 1 # See above. Here, it is 1 because we use math notation
    nOptim = 0
    xOptim = Matrix(m,m)
    mathP = p+1 #We use mathP (p+1) because the algorithm is written in mathematical notation (k = 1,p). By employing the matrix API, we can directly use the mathematical notation
    mathM = m+1 #We use mathM for the same reason we use mathP. It is used only for iterations, not defining sizes

    X = Matrix(m,VECTOR)
    Y = Matrix(m,VECTOR)
    r = Matrix(m,VECTOR)
    aux = Matrix(m,VECTOR)
    v = Matrix(m,VECTOR)

    for i in range(1,mathM):
        X.mathInsert(i,VECTOR,1)
    aux = copy.deepcopy(A.multiplyMatrix(X))
    r = copy.deepcopy(a.substractMatrix(aux))
    v = copy.deepcopy(r)
    for i in range(1,mathM):
        sum1 = 0
        for j in range(1,mathM):
            sum1 = sum1 + r.mathAt(j,1)**2
        av = Matrix(m,VECTOR)
        av = copy.deepcopy(A.multiplyMatrix(v))
        sum2 = 0
        for j in range(1,mathM):
            sum2 = sum2 + av.mathAt(j,1) * v.mathAt(j,1)
        ai = 0
        ai = sum1 / sum2+(10**(-10))
        aux = copy.deepcopy(v.scalarMultiplication(ai))
        aux = copy.deepcopy(aux.addMatrix(X))
        Y = copy.deepcopy(aux)
        aux = copy.deepcopy(A.multiplyMatrix(Y))
        r = copy.deepcopy(a.substractMatrix(aux))
        sum3 = 0
        ci = 0
        for j in range(1,mathM):
            sum3 = sum3 + r.mathAt(j,1)**2
        ci = sum3 / sum1
        aux = copy.deepcopy(v.scalarMultiplication(ci))
        aux = copy.deepcopy(r.addMatrix(aux))
        v = copy.deepcopy(aux)
        X = copy.deepcopy(Y)
    print("===== Conjugated Gradient =====")
    print("Optim solution (x):")
    X.display()
    print("Test:")
    result = A.multiplyMatrix(X)
    result.display()
    print("====================")
开发者ID:mayk93,项目名称:College,代码行数:55,代码来源:homeWork3v4.py

示例2: GaussSiedel

# 需要导入模块: from matrix import Matrix [as 别名]
# 或者: from matrix.Matrix import mathAt [as 别名]
def GaussSiedel(m,A,a,epsilon,p):
    '''
    The following 5 lines are not part of the algorithm per se. They are helpers.
    '''
    VECTOR = 1 # See above. Here, it is 1 because we use math notation
    nOptim = 0
    xOptim = Matrix(m,m)
    mathP = p+1 #We use mathP (p+1) because the algorithm is written in mathematical notation (k = 1,p). By employing the matrix API, we can directly use the mathematical notation
    mathM = m+1 #We use mathM for the same reason we use mathP. It is used only for iterations, not defining sizes

    for k in range(1,mathP):
        sigma = ((2*k)/(p+1))
        n = 0
        x = Matrix(m,VECTOR)
        condition = True
        while condition:
            n = n+1
            y = Matrix(m,1)
            for i in range(1,mathM):
                yi = ((1-sigma) * x.mathAt(i,VECTOR)) + (sigma/A.mathAt(i,i)*(a.mathAt(i,VECTOR)-computeAijYjSum(A,y,i) - computeAijXjSum(A,x,i,mathM)))
                y.mathInsert(i,VECTOR,yi)
            err = copy.deepcopy(sqrt(abs(computeGaussSiedelErrSum(A,y,x,mathM))))
            for i in range(1,mathM):
                x.mathInsert(i,VECTOR,(copy.deepcopy(y.mathAt(i,VECTOR))))
            condition = err < epsilon
        if k == 1:
            nOptim = copy.deepcopy(n)
            xOptim = copy.deepcopy(x)
        elif k>1:
            if n < nOptim:
                nOptim = copy.deepcopy(n)
                xOptim = copy.deepcopy(x)
        else:
            print("This should never be seen. If you see this, something is very, very wrong ...")
    print("===== Gauss Siedel =====")
    print("Optim n:",nOptim)
    print("Optim solution (x):")
    x.display()
    print("Test:")
    result = A.multiplyMatrix(x)
    result.display()
    print("====================")
开发者ID:mayk93,项目名称:College,代码行数:44,代码来源:homeWork3v4.py

示例3: Jacobi

# 需要导入模块: from matrix import Matrix [as 别名]
# 或者: from matrix.Matrix import mathAt [as 别名]
def Jacobi(m,A,a,epsilon,p):
    '''
    The following 5 lines are not part of the algorithm per se. They are helpers.
    '''
    VECTOR = 1 # See above. Here, it is 1 because we use math notation
    nOptim = 0
    xOptim = Matrix(m,m)
    mathP = p+1 #We use mathP (p+1) because the algorithm is written in mathematical notation (k = 1,p). By employing the matrix API, we can directly use the mathematical notation
    mathM = m+1 #We use mathM for the same reason we use mathP. It is used only for iterations, not defining sizes

    ni = copy.deepcopy(A.infiniteNorm())
    for k in range(1,mathP):
        sigma = ((2*k)/((mathP+1)*ni))
        Bsigma = Matrix(m,m)

        '''
        Compute Bsigma Matrix
        '''
        for i in range(1,mathM):
            for j in range(1,mathM):
                if i == j:
                    Bsigma.mathInsert(i,j,1-sigma) #(1-siga*A.mathAt(i,i)))
                else:
                    Bsigma.mathInsert(i,j,-sigma*(A.mathAt(i,j)/A.mathAt(i,i))) #(-sigma*A.mathAt(i,j)))
        '''
        Compute bsig vector
        '''
        bsig = Matrix(m,1)
        for i in range(1,mathM):
            bsig.mathInsert(i,VECTOR,(sigma*A.mathAt(i,VECTOR)))
        '''
        Initialize
        '''
        n = 0
        x = Matrix(m,1)
        '''
        Do while loop
        '''
        condition = True
        while condition:
            n = n + 1
            y = Matrix(m,1)
            for i in range(1,mathM):
                yi = copy.deepcopy(computeYiSum(Bsigma,bsig,x,i,mathM))
                y.mathInsert(i,VECTOR,yi)
                err = copy.deepcopy(sqrt( abs(computeErrSum(A,y,x,i,mathM)) ))
            for i in range(1,mathM):
                x.mathInsert(i,VECTOR,copy.deepcopy(y.mathAt(i,VECTOR)))
            condition = err < epsilon
        if k == 1:
            nOptim = copy.deepcopy(n)
            xOptim = copy.deepcopy(x)
        elif k>1:
            if n < nOptim:
                nOptim = copy.deepcopy(n)
                xOptim = copy.deepcopy(x)
        else:
            print("This should never be seen. If you see this, something is very, very wrong ...")
    print("===== Jacobi =====")
    print("Optim n:",nOptim)
    print("Optim solution (x):")
    x.display()
    print("Test:")
    result = A.multiplyMatrix(x)
    result.display()
    print("====================")
开发者ID:mayk93,项目名称:College,代码行数:68,代码来源:homeWork3v4.py


注:本文中的matrix.Matrix.mathAt方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。