当前位置: 首页>>代码示例>>Python>>正文


Python Matrix.display方法代码示例

本文整理汇总了Python中matrix.Matrix.display方法的典型用法代码示例。如果您正苦于以下问题:Python Matrix.display方法的具体用法?Python Matrix.display怎么用?Python Matrix.display使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在matrix.Matrix的用法示例。


在下文中一共展示了Matrix.display方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: rotationMethod

# 需要导入模块: from matrix import Matrix [as 别名]
# 或者: from matrix.Matrix import display [as 别名]
def rotationMethod(m,A,a,epsilon,p):
    #print("Start Rotation.")
    VECTOR = 1
    X = Matrix(m,VECTOR)
    oldA = Matrix(m,m)
    r = Matrix(m,VECTOR)
    iterationNumber = 0
    condition = True
    #print("Entering while.")
    while condition:
        #print("OldA copy.")
        oldA = copy.deepcopy(A)
        #print("0")
        r = copy.deepcopy(a.substractMatrix(A.matrixMultiplication(X,a)))
        #print("1")
        (xpq,p,q) = getMax(A.lowerTriangularMatrix())
        #print("2")
        theta = 0
        if A.lowerTriangularMatrix().at(p,p) == A.lowerTriangularMatrix().at(q,q):
            #print("3")
            theta = math.pi/4
        else:
            #print("4")
            theta = ( 2 * xpq )/(A.upperTriangularMatrix().at(p,p) - A.upperTriangularMatrix().at(q,q) + (10**(-5)))
        #print("Determined theta.")
        c = math.cos(theta)
        s = math.sin(theta)
        #print("5")
        T = Matrix(m,m)
        for i in range(0,T.numberOfColumns):
            T.insert(i,i,1)
        T.insert(p,p,c)
        T.insert(p,q,s)
        T.insert(q,p,-s)
        T.insert(q,q,c)
        #print("Determined T.")
        A = copy.deepcopy((T.transpose()).multiplyMatrix(oldA.multiplyMatrix(T)))
        #condition = not r.isAlmostZero()
        if iterationNumber%100 == 0:
            print("-----")
            print("Situation at iteration:",iterationNumber)
            print("Condition:",condition)
            print("A matrix:")
            A.display()
            print("X matrix:")
            X.display()
            print("-----")
        X = copy.deepcopy(oldA)
        iterationNumber += 1
        condition = iterationNumber > 10**(15)
        #condition = checkX(X)

    print("===== Rotation Method =====")
    print("X:")
    X.display()
    print("A:")
    A.display()
    #print("Test:")
    #r.display()
    print("====================")
开发者ID:mayk93,项目名称:College,代码行数:62,代码来源:homeWork3v3.py

示例2: main

# 需要导入模块: from matrix import Matrix [as 别名]
# 或者: from matrix.Matrix import display [as 别名]
def main():
    m = 10
    A = Matrix(m,m)
    A = copy.deepcopy(fillMatrix(A))
    a = Matrix(m,1)
    a = copy.deepcopy(fillResultVector(a))
    epsilon = 10**(-10)
    p = 2/10
    print("The matrix A:")
    A.display()
    rotationMethod(m,A,a,epsilon,p)
开发者ID:mayk93,项目名称:College,代码行数:13,代码来源:homeWork3v4.py

示例3: ConjugatedGradient

# 需要导入模块: from matrix import Matrix [as 别名]
# 或者: from matrix.Matrix import display [as 别名]
def ConjugatedGradient(m,A,a,epsilon,p):
    '''
    The following 5 lines are not part of the algorithm per se. They are helpers.
    '''
    VECTOR = 1 # See above. Here, it is 1 because we use math notation
    nOptim = 0
    xOptim = Matrix(m,m)
    mathP = p+1 #We use mathP (p+1) because the algorithm is written in mathematical notation (k = 1,p). By employing the matrix API, we can directly use the mathematical notation
    mathM = m+1 #We use mathM for the same reason we use mathP. It is used only for iterations, not defining sizes

    X = Matrix(m,VECTOR)
    Y = Matrix(m,VECTOR)
    r = Matrix(m,VECTOR)
    aux = Matrix(m,VECTOR)
    v = Matrix(m,VECTOR)

    for i in range(1,mathM):
        X.mathInsert(i,VECTOR,1)
    aux = copy.deepcopy(A.multiplyMatrix(X))
    r = copy.deepcopy(a.substractMatrix(aux))
    v = copy.deepcopy(r)
    for i in range(1,mathM):
        sum1 = 0
        for j in range(1,mathM):
            sum1 = sum1 + r.mathAt(j,1)**2
        av = Matrix(m,VECTOR)
        av = copy.deepcopy(A.multiplyMatrix(v))
        sum2 = 0
        for j in range(1,mathM):
            sum2 = sum2 + av.mathAt(j,1) * v.mathAt(j,1)
        ai = 0
        ai = sum1 / sum2+(10**(-10))
        aux = copy.deepcopy(v.scalarMultiplication(ai))
        aux = copy.deepcopy(aux.addMatrix(X))
        Y = copy.deepcopy(aux)
        aux = copy.deepcopy(A.multiplyMatrix(Y))
        r = copy.deepcopy(a.substractMatrix(aux))
        sum3 = 0
        ci = 0
        for j in range(1,mathM):
            sum3 = sum3 + r.mathAt(j,1)**2
        ci = sum3 / sum1
        aux = copy.deepcopy(v.scalarMultiplication(ci))
        aux = copy.deepcopy(r.addMatrix(aux))
        v = copy.deepcopy(aux)
        X = copy.deepcopy(Y)
    print("===== Conjugated Gradient =====")
    print("Optim solution (x):")
    X.display()
    print("Test:")
    result = A.multiplyMatrix(X)
    result.display()
    print("====================")
开发者ID:mayk93,项目名称:College,代码行数:55,代码来源:homeWork3v4.py

示例4: main

# 需要导入模块: from matrix import Matrix [as 别名]
# 或者: from matrix.Matrix import display [as 别名]
def main():
    m = 10
    A = Matrix(m,m)
    A = copy.deepcopy(fillMatrix(A))
    a = Matrix(m,1)
    a = copy.deepcopy(fillResultVector(a))
    epsilon = 10**(-5)
    p = 10

    print("The matrix A:")
    A.display()
    Jacobi(m,A,a,epsilon,p)
    GaussSiedel(m,A,a,epsilon,p)
    ConjugatedGradient(m,A,a,epsilon,p)
开发者ID:mayk93,项目名称:College,代码行数:16,代码来源:homeWork3.py

示例5: rotationMethod

# 需要导入模块: from matrix import Matrix [as 别名]
# 或者: from matrix.Matrix import display [as 别名]
def rotationMethod(m,A,a,epsilon,p):
    VECTOR = 1
    X = Matrix(m,VECTOR)
    oldA = Matrix(m,m)
    r = Matrix(m,VECTOR)
    iterationNumber = 0
    condition = True
    while condition:
        oldA = copy.deepcopy(A)
        r = copy.deepcopy(a.substractMatrix(A.matrixMultiplication(X,a)))
        (xpq,p,q) = getMax(A.lowerTriangularMatrix())
        theta = 0
        if A.lowerTriangularMatrix().at(p,p) == A.lowerTriangularMatrix().at(q,q):
            theta = math.pi/4
        else:
            theta = (1/2)*math.arct(( 2 * xpq )/(A.upperTriangularMatrix().at(p,p) - A.upperTriangularMatrix().at(q,q)))
        c = math.cos(theta)
        s = math.sin(theta)
        T = Matrix(m,m)
        for i in range(0,T.numberOfColumns):
            T.insert(i,i,1)
        T.insert(p,p,c)
        T.insert(p,q,s)
        T.insert(q,p,-s)
        T.insert(q,q,c)
        A = copy.deepcopy((T.transpose()).multiplyMatrix(oldA.multiplyMatrix(T)))
        '''
        if iterationNumber%100 == 0:
            print("-----")
            print("Situation at iteration:",iterationNumber)
            print("Condition:",condition)
            print("A matrix:")
            A.display()
            print("X matrix:")
            X.display()
            print("-----")
        '''
        X = copy.deepcopy(oldA)
        iterationNumber += 1
        condition = (iterationNumber < ITERATIONS)

    print("===== Rotation Method =====")
    print("X:")
    X.display()
    print("A:")
    A.display()
    print("Test:")
    r.display()
    print("====================")
开发者ID:mayk93,项目名称:College,代码行数:51,代码来源:homeWork3v4.py

示例6: otherJacobi

# 需要导入模块: from matrix import Matrix [as 别名]
# 或者: from matrix.Matrix import display [as 别名]
def otherJacobi(m,A,a,epsilon,p):
    VECTOR = 1
    X = Matrix(m,VECTOR)
    oldX = Matrix(m,VECTOR)
    r = Matrix(m,VECTOR)
    D = copy.deepcopy(A.diagonalMatrix())
    E = copy.deepcopy((A.negativeElements()).lowerTriangularMatrix())
    F = copy.deepcopy((A.negativeElements()).upperTriangularMatrix())

    P = copy.deepcopy(D)
    N = copy.deepcopy(D.substractMatrix(A))

    inverseD = copy.deepcopy(D.inverse())
    Bj = copy.deepcopy(inverseD.multiplyMatrix(copy.deepcopy(E.addMatrix(F))))

    for iteration in range(0,100):
        Bjp = copy.deepcopy((Bj.scalarMultiplication(p)).addMatrix((matrix.newIdentiryMatrix(m,m)).scalarMultiplication(1-p)))

    condition = True
    iterationNumber = 0
    while condition:
        r = copy.deepcopy(a.substractMatrix(A.multiplyMatrix(X)))
        oldX = copy.deepcopy(X)
        X = copy.deepcopy(oldX.addMatrix( copy.deepcopy( inverseD.scalarMultiplication(p) ).multiplyMatrix(r) ))
        condition = not r.isAlmostZero()

        if iterationNumber%100 == 0:
            print("-----")
            print("Situation at iteration:",iterationNumber)
            print("Condition:",condition)
            print("oldX:")
            oldX.display()
            print("X:")
            X.display()
            print("The r vector:")
            r.display()
            print("-----")
        iterationNumber += 1

    print("===== Other Jacobi =====")
    print("X:")
    X.display()
    print("Test:")
    r.display()
    print("====================")
开发者ID:mayk93,项目名称:College,代码行数:47,代码来源:homeWork3v4.py

示例7: GaussSiedel

# 需要导入模块: from matrix import Matrix [as 别名]
# 或者: from matrix.Matrix import display [as 别名]
def GaussSiedel(m,A,a,epsilon,p):
    '''
    The following 5 lines are not part of the algorithm per se. They are helpers.
    '''
    VECTOR = 1 # See above. Here, it is 1 because we use math notation
    nOptim = 0
    xOptim = Matrix(m,m)
    mathP = p+1 #We use mathP (p+1) because the algorithm is written in mathematical notation (k = 1,p). By employing the matrix API, we can directly use the mathematical notation
    mathM = m+1 #We use mathM for the same reason we use mathP. It is used only for iterations, not defining sizes

    for k in range(1,mathP):
        sigma = ((2*k)/(p+1))
        n = 0
        x = Matrix(m,VECTOR)
        condition = True
        while condition:
            n = n+1
            y = Matrix(m,1)
            for i in range(1,mathM):
                yi = ((1-sigma) * x.mathAt(i,VECTOR)) + (sigma/A.mathAt(i,i)*(a.mathAt(i,VECTOR)-computeAijYjSum(A,y,i) - computeAijXjSum(A,x,i,mathM)))
                y.mathInsert(i,VECTOR,yi)
            err = copy.deepcopy(sqrt(abs(computeGaussSiedelErrSum(A,y,x,mathM))))
            for i in range(1,mathM):
                x.mathInsert(i,VECTOR,(copy.deepcopy(y.mathAt(i,VECTOR))))
            condition = err < epsilon
        if k == 1:
            nOptim = copy.deepcopy(n)
            xOptim = copy.deepcopy(x)
        elif k>1:
            if n < nOptim:
                nOptim = copy.deepcopy(n)
                xOptim = copy.deepcopy(x)
        else:
            print("This should never be seen. If you see this, something is very, very wrong ...")
    print("===== Gauss Siedel =====")
    print("Optim n:",nOptim)
    print("Optim solution (x):")
    x.display()
    print("Test:")
    result = A.multiplyMatrix(x)
    result.display()
    print("====================")
开发者ID:mayk93,项目名称:College,代码行数:44,代码来源:homeWork3v4.py

示例8: int

# 需要导入模块: from matrix import Matrix [as 别名]
# 或者: from matrix.Matrix import display [as 别名]
		integer = int(sys.argv[1]) 
	if len(sys.argv) > 2:
		timeout = int(sys.argv[2]) 

	divisor_list = generate_divisor_list(integer)

	if timeout > 0:
		for integer, divisors in enumerate(divisor_list):
			if integer < 2: continue;
			os.system('clear');
			
			print integer, divisors	
			print	
		
			m = Matrix(25,4)
			traverse(m, divisors)	
	
			m.display() 
			time.sleep(timeout)	
	else:
		divisors = divisor_list[integer]
		print integer, divisors	
		print	
		
		m = Matrix(25,4)
		traverse(m, divisors)	
	
		m.display() 
		

开发者ID:alexbruckner,项目名称:primematrix,代码行数:30,代码来源:primematrix.py

示例9: Jacobi

# 需要导入模块: from matrix import Matrix [as 别名]
# 或者: from matrix.Matrix import display [as 别名]
def Jacobi(m,A,a,epsilon,p):
    '''
    The following 5 lines are not part of the algorithm per se. They are helpers.
    '''
    VECTOR = 1 # See above. Here, it is 1 because we use math notation
    nOptim = 0
    xOptim = Matrix(m,m)
    mathP = p+1 #We use mathP (p+1) because the algorithm is written in mathematical notation (k = 1,p). By employing the matrix API, we can directly use the mathematical notation
    mathM = m+1 #We use mathM for the same reason we use mathP. It is used only for iterations, not defining sizes

    ni = copy.deepcopy(A.infiniteNorm())
    for k in range(1,mathP):
        sigma = ((2*k)/((mathP+1)*ni))
        Bsigma = Matrix(m,m)

        '''
        Compute Bsigma Matrix
        '''
        for i in range(1,mathM):
            for j in range(1,mathM):
                if i == j:
                    Bsigma.mathInsert(i,j,1-sigma) #(1-siga*A.mathAt(i,i)))
                else:
                    Bsigma.mathInsert(i,j,-sigma*(A.mathAt(i,j)/A.mathAt(i,i))) #(-sigma*A.mathAt(i,j)))
        '''
        Compute bsig vector
        '''
        bsig = Matrix(m,1)
        for i in range(1,mathM):
            bsig.mathInsert(i,VECTOR,(sigma*A.mathAt(i,VECTOR)))
        '''
        Initialize
        '''
        n = 0
        x = Matrix(m,1)
        '''
        Do while loop
        '''
        condition = True
        while condition:
            n = n + 1
            y = Matrix(m,1)
            for i in range(1,mathM):
                yi = copy.deepcopy(computeYiSum(Bsigma,bsig,x,i,mathM))
                y.mathInsert(i,VECTOR,yi)
                err = copy.deepcopy(sqrt( abs(computeErrSum(A,y,x,i,mathM)) ))
            for i in range(1,mathM):
                x.mathInsert(i,VECTOR,copy.deepcopy(y.mathAt(i,VECTOR)))
            condition = err < epsilon
        if k == 1:
            nOptim = copy.deepcopy(n)
            xOptim = copy.deepcopy(x)
        elif k>1:
            if n < nOptim:
                nOptim = copy.deepcopy(n)
                xOptim = copy.deepcopy(x)
        else:
            print("This should never be seen. If you see this, something is very, very wrong ...")
    print("===== Jacobi =====")
    print("Optim n:",nOptim)
    print("Optim solution (x):")
    x.display()
    print("Test:")
    result = A.multiplyMatrix(x)
    result.display()
    print("====================")
开发者ID:mayk93,项目名称:College,代码行数:68,代码来源:homeWork3v4.py

示例10: otherGaussSiedel

# 需要导入模块: from matrix import Matrix [as 别名]
# 或者: from matrix.Matrix import display [as 别名]
def otherGaussSiedel(m,A,a,epsilon,p):
    VECTOR = 1 # See above. Here, it is 1 because we use math notation
    nOptim = 0
    xOptim = Matrix(m,m)
    mathP = p+1 #We use mathP (p+1) because the algorithm is written in mathematical notation (k = 1,p). By employing the matrix API, we can directly use the mathematical notation
    mathM = m+1 #We use mathM for the same reason we use mathP. It is used only for iterations, not defining sizes

    B = Matrix(m,m)
    B = copy.deepcopy(otherGaussSiedelB(A,m))

    q0 = B.normOne()
    q1 = B.infiniteNorm()
    q = -1
    norm = -1
    if q0 < 1 or q1 < 1:
        if q0 < 1:
            q = q0
            norm = 1
        elif q1 < 1:
            q = q1
            norm = 999
        #Initialize x
        x = Matrix(m,VECTOR)
        #print("X:")
        #x.display()
        x.mathInsert(random.randrange(1,mathM),VECTOR,random.randrange(1,5))
        #print("X after first insertion:")
        #x.display()
        x.mathInsert(random.randrange(1,mathM)-1,VECTOR,random.randrange(1,5)+2)
        #print("X after second insertion:")
        #x.display()
        x.mathInsert(random.randrange(1,mathM)-1,VECTOR,random.randrange(1,5)+7)
        #print("X after third insertion:")
        #x.display()

        newX = copy.deepcopy(Matrix(m,VECTOR))
        condition = True
        iteration = 0
        while condition:
            iteration += 1
            newX = copy.deepcopy(Matrix(m,VECTOR))
            for i in range(1,mathM):
                newElementOfX = otherGaussSiedelSum(B,x,a,i,mathM)
                #print(">!< Haha")
                newX.mathInsert(i,VECTOR,newElementOfX)
            conditionValue = ( (q/(1-q))*computeNorm(x,newX,norm) )
            condition = conditionValue > epsilon

            '''
            print("Old x:")
            x.display()
            print("New x:")
            newX.display()
            '''

            for xIndex in range(1,mathM):
                x.mathInsert(xIndex,VECTOR,newX.mathAt(xIndex,VECTOR))

            '''
            print("X after reasignment:")
            x.display()
            '''

            #print("Iteration:",iteration," - ",conditionValue,"out of",epsilon,".")
        print("===== Other Gauss Siedel =====")
        print("Optim solution (x):")
        x.display()
        print("Test:")
        result = A.multiplyMatrix(newX)
        result.display()
        print("====================")
    else:
        print("Else Other Gauss Siedel.")
开发者ID:mayk93,项目名称:College,代码行数:75,代码来源:homeWork3v4.py


注:本文中的matrix.Matrix.display方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。