本文整理汇总了Python中matplotlib.image.NonUniformImage.set_norm方法的典型用法代码示例。如果您正苦于以下问题:Python NonUniformImage.set_norm方法的具体用法?Python NonUniformImage.set_norm怎么用?Python NonUniformImage.set_norm使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.image.NonUniformImage
的用法示例。
在下文中一共展示了NonUniformImage.set_norm方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot2d
# 需要导入模块: from matplotlib.image import NonUniformImage [as 别名]
# 或者: from matplotlib.image.NonUniformImage import set_norm [as 别名]
def plot2d(x, y, z, ax=None, cmap='RdGy', norm=None, **kw):
""" Plot dataset using NonUniformImage class
Parameters
----------
x : (nx,)
y : (ny,)
z : (nx,nz)
"""
from matplotlib.image import NonUniformImage
if ax is None:
fig = plt.gcf()
ax = fig.add_subplot(111)
xlim = (x.min(), x.max())
ylim = (y.min(), y.max())
im = NonUniformImage(ax,
interpolation='bilinear',
extent=xlim + ylim,
cmap=cmap)
if norm is not None:
im.set_norm(norm)
im.set_data(x, y, z, **kw)
ax.images.append(im)
#plt.colorbar(im)
ax.set_xlim(xlim)
ax.set_ylim(ylim)
def update(z):
return im.set_data(x, y, z, **kw)
return im, update
示例2: test_nonuniformimage_setnorm
# 需要导入模块: from matplotlib.image import NonUniformImage [as 别名]
# 或者: from matplotlib.image.NonUniformImage import set_norm [as 别名]
def test_nonuniformimage_setnorm():
ax = plt.gca()
im = NonUniformImage(ax)
im.set_norm(plt.Normalize())
示例3: tsys_show_dynspec
# 需要导入模块: from matplotlib.image import NonUniformImage [as 别名]
# 或者: from matplotlib.image.NonUniformImage import set_norm [as 别名]
def tsys_show_dynspec(out,idx=None,ampscl=None,domedian=True,frq='linear'):
''' Given "standard" output of rd_tsys_multi(), possibly
calibrated using calibration.sp_apply_cal() and/or
background-subtracted using calibration.sp_bg_subtract(),
make a nice image plot of the dynamic spectrum. The
plot can contain multiple panels if domedian is False,
or plot a single spectrum representing the median of
multiple antennas. Only linear frequency scale is supported
at this time.
'''
from matplotlib.image import NonUniformImage
from matplotlib.dates import AutoDateLocator, DateFormatter
from matplotlib import colors
from matplotlib.pyplot import locator_params
from util import Time
nant, npol, nf, nt = out['tsys'].shape
if idx is None:
idx_ = np.arange(nt)
else:
idx_ = idx
ut = Time(out['ut_mjd'][idx_],format='mjd')
utd = (ut.mjd - int(ut[0].mjd) + 1).astype('float')
good = np.where(out['fghz'] > 2.0)[0]
if frq == 'linear':
fghz = out['fghz'][good]
else:
fghz = np.log10(out['fghz'][good])
locator = AutoDateLocator(interval_multiples=True) #maxticks=7,minticks=3,
tsys = out['tsys'][:,:,good,idx_]
if domedian:
medtsys = np.nanmedian(np.nanmedian(tsys,0),0)
fig = plt.figure()
fig.suptitle('EOVSA Total Power Data for '+ut[0].iso[:10],fontsize=14)
# Plot X-feed
ax = fig.add_subplot(211)
ax.xaxis_date()
ax.set_ylabel('Frequency [GHz]')
ax.set_title('Median Total Power')
extent=[utd[0],utd[-1],fghz[0],fghz[-1]]
# extent=[ut[0],ut[-1],fghz[0],fghz[-1]]
im = NonUniformImage(ax,extent=extent)
if ampscl != None:
im.set_norm(colors.Normalize(vmin=ampscl[0],vmax=ampscl[1]))
im.set_data(utd,fghz,medtsys)
#fig.colorbar(im,ax)
ax.images.append(im)
ax.set_xlim(extent[0],extent[1])
ax.set_ylim(extent[2],extent[3])
ax.xaxis.set_major_locator(locator)
#ax.xaxis.set_minor_locator(MinuteLocator(interval=10))
# Set up date formatting
fmt = DateFormatter('%H:%M:%S')
ax.xaxis.set_major_formatter(fmt)
labels = (10**ax.get_yticks()).astype('str')
for i in range(len(labels)):
labels[i] = labels[i][:4]
ax.set_yticklabels(labels)
# Repeat for Y-feed
ax = fig.add_subplot(212)
ax.xaxis_date()
ax.set_xlabel('Start time '+ut[0].iso[:19]+' UT')
ax.set_title('Median of Y-poln')
ax.set_ylabel('Frequency [GHz]')
im = NonUniformImage(ax,extent=extent)
if ampscl != None:
im.set_norm(colors.Normalize(vmin=ampscl[0],vmax=ampscl[1]))
im.set_data(utd,fghz,medytsys)
#fig.colorbar(im,ax)
ax.images.append(im)
ax.set_xlim(extent[0],extent[1])
ax.set_ylim(extent[2],extent[3])
ax.xaxis.set_major_locator(locator)
# Set up date formatting
ax.xaxis.set_major_formatter(fmt)
ax.set_yticklabels(labels)
plt.draw()
plt.show()