当前位置: 首页>>代码示例>>Python>>正文


Python NonUniformImage.set_cmap方法代码示例

本文整理汇总了Python中matplotlib.image.NonUniformImage.set_cmap方法的典型用法代码示例。如果您正苦于以下问题:Python NonUniformImage.set_cmap方法的具体用法?Python NonUniformImage.set_cmap怎么用?Python NonUniformImage.set_cmap使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在matplotlib.image.NonUniformImage的用法示例。


在下文中一共展示了NonUniformImage.set_cmap方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: plot_time_frequency

# 需要导入模块: from matplotlib.image import NonUniformImage [as 别名]
# 或者: from matplotlib.image.NonUniformImage import set_cmap [as 别名]
def plot_time_frequency(spectrum, interpolation='bilinear', 
    background_color=None, clim=None, dbscale=True, **kwargs):
    """
    Time-frequency plot. Modeled after image_nonuniform.py example 
    spectrum is a dataframe with frequencies in columns and time in rows
    """
    if spectrum is None:
        return None
    
    times = spectrum.index
    freqs = spectrum.columns
    if dbscale:
        z = 10 * np.log10(spectrum.T)
    else:
        z = spectrum.T
    ax = plt.figure().add_subplot(111)
    extent = (times[0], times[-1], freqs[0], freqs[-1])
    
    im = NonUniformImage(ax, interpolation=interpolation, extent=extent)

    if background_color:
        im.get_cmap().set_bad(kwargs['background_color'])
    else:
        z[np.isnan(z)] = 0.0  # replace missing values with 0 color

    if clim:
        im.set_clim(clim)

    if 'cmap' in kwargs:
        im.set_cmap(kwargs['cmap'])

    im.set_data(times, freqs, z)
    ax.set_xlim(extent[0], extent[1])
    ax.set_ylim(extent[2], extent[3])
    ax.images.append(im)
    if 'colorbar_label' in kwargs:
        plt.colorbar(im, label=kwargs['colorbar_label'])
    else:
        plt.colorbar(im, label='Power (dB/Hz)')
    plt.xlabel('Time (s)')
    plt.ylabel('Frequency (Hz)')
    return plt.gcf() 
开发者ID:jmxpearson,项目名称:physutils,代码行数:44,代码来源:tf.py

示例2: test_nonuniformimage_setcmap

# 需要导入模块: from matplotlib.image import NonUniformImage [as 别名]
# 或者: from matplotlib.image.NonUniformImage import set_cmap [as 别名]
def test_nonuniformimage_setcmap():
    ax = plt.gca()
    im = NonUniformImage(ax)
    im.set_cmap('Blues')
开发者ID:4over7,项目名称:matplotlib,代码行数:6,代码来源:test_image.py

示例3: cross_wavelet

# 需要导入模块: from matplotlib.image import NonUniformImage [as 别名]
# 或者: from matplotlib.image.NonUniformImage import set_cmap [as 别名]
    def cross_wavelet(self, signal_1, signal_2, mother='morlet', plot=True):

        signal_1 = (signal_1 - signal_1.mean()) / signal_1.std()    # Normalizing
        signal_2 = (signal_2 - signal_2.mean()) / signal_2.std()    # Normalizing

        W12, cross_coi, freq, signif = wavelet.xwt(signal_1, signal_2, self.period, dj=1/100, s0=-1, J=-1,
                                             significance_level=0.95, wavelet=mother,
                                             normalize=True)

        cross_power = np.abs(W12)**2
        cross_sig = np.ones([1, signal_1.size]) * signif[:, None]
        cross_sig = cross_power / cross_sig
        cross_period = 1/freq

        WCT, aWCT, corr_coi, freq, sig = wavelet.wct(signal_1, signal_2, self.period, dj=1/100, s0=-1, J=-1,
                                                sig=False,significance_level=0.95, wavelet=mother,
                                                normalize=True)

        cor_sig = np.ones([1, signal_1.size]) * sig[:, None]
        cor_sig = np.abs(WCT) / cor_sig
        cor_period = 1/freq

        angle = 0.5 * np.pi - aWCT
        u, v = np.cos(angle), np.sin(angle)


        t1 = np.linspace(0,self.period*signal_1.size,signal_1.size)

        ## indices for stuff
        idx = self.find_closest(cor_period,corr_coi.max())

        ## Into minutes
        t1 /= 60
        cross_period /= 60
        cor_period /= 60
        cross_coi /= 60
        corr_coi /= 60

        fig1, ax1 = plt.subplots(nrows=1,ncols=1, sharex=True, sharey=True, figsize=(12,12))
        extent_cross = [t1.min(),t1.max(),0,max(cross_period)]
        extent_corr =  [t1.min(),t1.max(),0,max(cor_period)]
        im1 = NonUniformImage(ax1, interpolation='nearest', extent=extent_cross)
        im1.set_cmap('cubehelix')
        im1.set_data(t1, cross_period[:idx], cross_power[:idx,:])
        ax1.images.append(im1)
        ax1.contour(t1, cross_period[:idx], cross_sig[:idx,:], [-99, 1], colors='k', linewidths=2, extent=extent_cross)
        ax1.fill(np.concatenate([t1, t1[-1:]+self.period, t1[-1:]+self.period,t1[:1]-self.period, t1[:1]-self.period]),
                (np.concatenate([cross_coi,[1e-9], cross_period[-1:], cross_period[-1:], [1e-9]])),
                'k', alpha=0.3,hatch='x')
        ax1.set_title('Cross-Wavelet')
#        ax1.quiver(t1[::3], cross_period[::3], u[::3, ::3],
#                  v[::3, ::3], units='width', angles='uv', pivot='mid',
#                  linewidth=1.5, edgecolor='k', headwidth=10, headlength=10,
#                  headaxislength=5, minshaft=2, minlength=5)
        ax1.set_ylim(([min(cross_period), cross_period[idx]]))
        ax1.set_xlim(t1.min(),t1.max())

        fig2, ax2 = plt.subplots(nrows=1,ncols=1, sharex=True, sharey=True, figsize=(12,12))
        fig2.subplots_adjust(right=0.8)
        cbar_ax_1 = fig2.add_axes([0.85, 0.05, 0.05, 0.35])
        im2 = NonUniformImage(ax2, interpolation='nearest', extent=extent_corr)
        im2.set_cmap('cubehelix')
        im2.set_data(t1, cor_period[:idx], np.log10(WCT[:idx,:]))
        ax2.images.append(im2)
        ax2.contour(t1, cor_period[:idx], cor_sig[:idx,:], [-99, 1], colors='k', linewidths=2, extent=extent_corr)
        ax2.fill(np.concatenate([t1, t1[-1:]+self.period, t1[-1:]+self.period,t1[:1]-self.period, t1[:1]-self.period]),
                (np.concatenate([corr_coi,[1e-9], cor_period[-1:], cor_period[-1:], [1e-9]])),
                'k', alpha=0.3,hatch='x')
        ax2.set_title('Cross-Correlation')
#        ax2.quiver(t1[::3], cor_period[::3], u[::3,::3], v[::3,::3],
#                   units='height', angles='uv', pivot='mid',linewidth=1.5, edgecolor='k',
#                   headwidth=10, headlength=10, headaxislength=5, minshaft=2, minlength=5)
        ax2.set_ylim(([min(cor_period), cor_period[idx]]))
        ax2.set_xlim(t1.min(),t1.max())
        fig2.colorbar(im2, cax=cbar_ax_1)

        plt.show()

        plt.figure(figsize=(12,12))
        im3= plt.imshow(np.rad2deg(aWCT), origin='lower',interpolation='nearest', cmap='seismic', extent=extent_corr)
        plt.fill(np.concatenate([t1, t1[-1:]+self.period, t1[-1:]+self.period,t1[:1]-self.period, t1[:1]-self.period]),
                (np.concatenate([corr_coi,[1e-9], cor_period[-1:], cor_period[-1:], [1e-9]])),
                'k', alpha=0.3,hatch='x')
        plt.ylim(([min(cor_period), cor_period[idx]]))
        plt.xlim(t1.min(),t1.max())
        plt.colorbar(im3)
        plt.show()


        return
开发者ID:CyclingNinja,项目名称:sunkit-sst,代码行数:92,代码来源:dataclass.py

示例4: single_plot

# 需要导入模块: from matplotlib.image import NonUniformImage [as 别名]
# 或者: from matplotlib.image.NonUniformImage import set_cmap [as 别名]
def single_plot(data, x, y, axes=None, beta=None, cbar_label='',
                cmap=plt.get_cmap('RdBu'), vmin=None, vmax=None,
                phase_speeds=True, manual_locations=False, **kwargs):
    """
    Plot a single frame Time-Distance Diagram on physical axes.

    This function uses mpl NonUniformImage to plot a image using x and y arrays,
    it will also optionally over plot in contours beta lines.

    Parameters
    ----------
    data: np.ndarray
        The 2D image to plot
    x: np.ndarray
        The x coordinates
    y: np.ndarray
        The y coordinates
    axes: matplotlib axes instance [*optional*]
        The axes to plot the data on, if None, use plt.gca().
    beta: np.ndarray [*optional*]
        The array to contour over the top, default to none.
    cbar_label: string [*optional*]
        The title label for the colour bar, default to none.
    cmap: A matplotlib colour map instance [*optional*]
        The colourmap to use, default to 'RdBu'
    vmin: float [*optional*]
        The min scaling for the image, default to the image limits.
    vmax: float [*optional*]
        The max scaling for the image, default to the image limits.
    phase_speeds : bool
        Add phase speed lines to the plot
    manual_locations : bool
        Array for clabel locations.

    Returns
    -------
    None
    """
    if axes is None:
        axes = plt.gca()

    x = x[:xxlim]
    data = data[:,:xxlim]

    im = NonUniformImage(axes,interpolation='nearest',
                         extent=[x.min(),x.max(),y.min(),y.max()],rasterized=False)
    im.set_cmap(cmap)
    if vmin is None and vmax is None:
        lim = np.max([np.nanmax(data),
                  np.abs(np.nanmin(data))])
        im.set_clim(vmax=lim,vmin=-lim)
    else:
        im.set_clim(vmax=vmax,vmin=vmin)
    im.set_data(x,y,data)
    im.set_interpolation('nearest')

    axes.images.append(im)
    axes.set_xlim(x.min(),x.max())
    axes.set_ylim(y.min(),y.max())

    cax0 = make_axes_locatable(axes).append_axes("right", size="5%", pad=0.05)
    cbar0 = plt.colorbar(im, cax=cax0, ticks=mpl.ticker.MaxNLocator(7))
    cbar0.set_label(cbar_label)
    cbar0.solids.set_edgecolor("face")
    kwergs = {'levels': [1., 1/3., 1/5., 1/10., 1/20.]}
    kwergs.update(kwargs)

    if beta is not None:
        ct = axes.contour(x,y,beta[:,:xxlim],colors=['k'], **kwergs)
        plt.clabel(ct,fontsize=14,inline_spacing=3, manual=manual_locations,
                   fmt=mpl.ticker.FuncFormatter(betaswap))

    axes.set_xlabel("Time [s]")
    axes.set_ylabel("Height [Mm]")
开发者ID:Cadair,项目名称:VivaTalk,代码行数:76,代码来源:td_plotting_helpers.py

示例5: wavelet

# 需要导入模块: from matplotlib.image import NonUniformImage [as 别名]
# 或者: from matplotlib.image.NonUniformImage import set_cmap [as 别名]
    def wavelet(self, signal, mother='morlet', plot=True):
        """
        Takes a 1D signal and perfroms a continous wavelet transform.

        Parameters
        ----------

        time: ndarray
            The 1D time series for the data
        data: ndarray
            The actual 1D data
        mother: string
            The name of the family. Acceptable values are Paul, Morlet, DOG, Mexican_hat
        plot: bool
            If True, will return a plot of the result.
        Returns
        -------

        Examples
        --------

        """
        sig_level = 0.95
        std2 = signal.std() ** 2
        signal_orig = signal[:]
        signal = (signal - signal.mean())/ signal.std()
        t1 = np.linspace(0,self.period*signal.size,signal.size)
        wave, scales, freqs, coi, fft, fftfreqs = wavelet.cwt(signal,
                                                              self.period,
                                                              wavelet=mother, dj=1/100)
        power = (np.abs(wave)) ** 2
        period = 1/freqs
#        alpha, _, _ = wavelet.ar1(signal)
        alpha = 0.0
        ## (variance=1 for the normalized SST)
        signif, fft_theor = wavelet.significance(1.0, self.period, scales, 0, alpha,
                                significance_level=sig_level, wavelet=mother)
        sig95 = np.ones([1, signal.size]) * signif[:, None]
        sig95 = power / sig95

        glbl_power = std2 * power.mean(axis=1)
        dof = signal.size - scales
        glbl_signif, tmp = wavelet.significance(std2, self.period, scales, 1, alpha,
                               significance_level=sig_level, dof=dof, wavelet=mother)

        ## indices for stuff
        idx = self.find_closest(period,coi.max())

        ## Into minutes
        t1 /= 60
        period /= 60
        coi /= 60

        if plot:
            plt.figure(figsize=(12,12))

            ax = plt.axes([0.1, 0.75, 0.65, 0.2])
            ax.plot(t1, signal_orig-signal_orig.mean(), 'k', linewidth=1.5)

            extent = [t1.min(),t1.max(),0,max(period)]
            bx = plt.axes([0.1, 0.1, 0.65, 0.55], sharex=ax)
            im = NonUniformImage(bx, interpolation='nearest', extent=extent)
            im.set_cmap('cubehelix')
            im.set_data(t1, period[:idx], power[:idx,:])
            bx.images.append(im)
            bx.contour(t1, period[:idx], sig95[:idx,:], [-99,1], colors='w', linewidths=2, extent=extent)
            bx.fill(np.concatenate([t1, t1[-1:]+self.period, t1[-1:]+self.period,t1[:1]-self.period, t1[:1]-self.period]),
                    (np.concatenate([coi,[1e-9], period[-1:], period[-1:], [1e-9]])),
                    'k', alpha=0.3,hatch='x', zorder=100)
            bx.set_xlim(t1.min(),t1.max())

            cx = plt.axes([0.77, 0.1, 0.2, 0.55], sharey=bx)
            cx.plot(glbl_signif[:idx], period[:idx], 'k--')
            cx.plot(glbl_power[:idx], period[:idx], 'k-', linewidth=1.5)
            cx.set_ylim(([min(period), period[idx]]))
            plt.setp(cx.get_yticklabels(), visible=False)

            plt.show()
        return wave, scales, freqs, coi, power
开发者ID:CyclingNinja,项目名称:sunkit-sst,代码行数:81,代码来源:dataclass.py


注:本文中的matplotlib.image.NonUniformImage.set_cmap方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。