当前位置: 首页>>代码示例>>Python>>正文


Python NonUniformImage.set_clim方法代码示例

本文整理汇总了Python中matplotlib.image.NonUniformImage.set_clim方法的典型用法代码示例。如果您正苦于以下问题:Python NonUniformImage.set_clim方法的具体用法?Python NonUniformImage.set_clim怎么用?Python NonUniformImage.set_clim使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在matplotlib.image.NonUniformImage的用法示例。


在下文中一共展示了NonUniformImage.set_clim方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: execute

# 需要导入模块: from matplotlib.image import NonUniformImage [as 别名]
# 或者: from matplotlib.image.NonUniformImage import set_clim [as 别名]
 def execute(self):
     pylab.ioff()
     self.figure = pylab.figure()
     self.figure.canvas.mpl_connect('motion_notify_event', self.dataPrinter)
     x = self.fieldContainer.dimensions[-1].data
     y = self.fieldContainer.dimensions[-2].data
     xmin=scipy.amin(x)
     xmax=scipy.amax(x)
     ymin=scipy.amin(y)
     ymax=scipy.amax(y)
     #Support for images with non uniform axes adapted
     #from python-matplotlib-doc/examples/pcolor_nonuniform.py
     ax = self.figure.add_subplot(111)
     vmin = self.fieldContainer.attributes.get('vmin', None)
     vmax = self.fieldContainer.attributes.get('vmax', None)
     if vmin is not None:
         vmin /= self.fieldContainer.unit
     if vmax is not None:
         vmax /= self.fieldContainer.unit
     if MPL_LT_0_98_1 or self.fieldContainer.isLinearlyDiscretised():
         pylab.imshow(self.fieldContainer.maskedData,
                      aspect='auto',
                      interpolation='nearest',
                      vmin=vmin,
                      vmax=vmax,
                      origin='lower',
                      extent=(xmin, xmax, ymin, ymax))
         pylab.colorbar(format=F(self.fieldContainer), ax=ax)
     else:
         im = NonUniformImage(ax, extent=(xmin,xmax,ymin,ymax))
         if vmin is not None or vmax is not None:
             im.set_clim(vmin, vmax)
             im.set_data(x, y, self.fieldContainer.maskedData)
         else:
             im.set_data(x, y, self.fieldContainer.maskedData)
             im.autoscale_None()
         ax.images.append(im)
         ax.set_xlim(xmin,xmax)
         ax.set_ylim(ymin,ymax)
         pylab.colorbar(im,format=F(self.fieldContainer), ax=ax)
     pylab.xlabel(self.fieldContainer.dimensions[-1].shortlabel)
     pylab.ylabel(self.fieldContainer.dimensions[-2].shortlabel)
     pylab.title(self.fieldContainer.label)
     #ax=pylab.gca()
     if self.show:
         pylab.ion()
         pylab.show()
开发者ID:gclos,项目名称:pyphant1,代码行数:49,代码来源:ImageVisualizer.py

示例2: plot_time_frequency

# 需要导入模块: from matplotlib.image import NonUniformImage [as 别名]
# 或者: from matplotlib.image.NonUniformImage import set_clim [as 别名]
def plot_time_frequency(spectrum, interpolation='bilinear', 
    background_color=None, clim=None, dbscale=True, **kwargs):
    """
    Time-frequency plot. Modeled after image_nonuniform.py example 
    spectrum is a dataframe with frequencies in columns and time in rows
    """
    if spectrum is None:
        return None
    
    times = spectrum.index
    freqs = spectrum.columns
    if dbscale:
        z = 10 * np.log10(spectrum.T)
    else:
        z = spectrum.T
    ax = plt.figure().add_subplot(111)
    extent = (times[0], times[-1], freqs[0], freqs[-1])
    
    im = NonUniformImage(ax, interpolation=interpolation, extent=extent)

    if background_color:
        im.get_cmap().set_bad(kwargs['background_color'])
    else:
        z[np.isnan(z)] = 0.0  # replace missing values with 0 color

    if clim:
        im.set_clim(clim)

    if 'cmap' in kwargs:
        im.set_cmap(kwargs['cmap'])

    im.set_data(times, freqs, z)
    ax.set_xlim(extent[0], extent[1])
    ax.set_ylim(extent[2], extent[3])
    ax.images.append(im)
    if 'colorbar_label' in kwargs:
        plt.colorbar(im, label=kwargs['colorbar_label'])
    else:
        plt.colorbar(im, label='Power (dB/Hz)')
    plt.xlabel('Time (s)')
    plt.ylabel('Frequency (Hz)')
    return plt.gcf() 
开发者ID:jmxpearson,项目名称:physutils,代码行数:44,代码来源:tf.py

示例3: str

# 需要导入模块: from matplotlib.image import NonUniformImage [as 别名]
# 或者: from matplotlib.image.NonUniformImage import set_clim [as 别名]
	scatf5 = 5.0*scatf1
	# print max scatter values and their times
	print 'max scatter f1 = ' + str(max(scatf1)) + ' Hz'
	tofmax = times[argmax(scatf2)]
	tofmaxgps = tofmax + start_time
	print 'time of max f2 = ' + str(tofmax) + ' s, GPS=' + str(tofmaxgps)

	fig = plt.figure(figsize=(12,12))
	ax1 = fig.add_subplot(211)
	# Plot Spectrogram
	if plotspec==1:
        	im1 = NonUniformImage(ax1, interpolation='bilinear',extent=(min(t),max(t),10,55),cmap='jet')
        	im1.set_data(t,freq,20.0*log10(Pxx))
        	if witness_base=="GDS-CALIB_STRAIN":
			print "setting color limits for STRAIN"
			im1.set_clim(-1000,-800)
        	elif witness_base=="ASC-AS_B_RF45_Q_YAW_OUT_DQ" or witness_base=="ASC-AS_B_RF36_Q_PIT_OUT_DQ" or witness_base=="ASC-AS_A_RF45_Q_PIT_OUT_DQ" or witness_base=="LSC-MICH_IN1_DQ":
			im1.set_clim(-200,20)
		elif witness_base == "OMC-LSC_SERVO_OUT_DQ":
			im1.set_clim(-240,-85)
		ax1.images.append(im1)
        	#cbar1 = fig.colorbar(im1)
        	#cbar1.set_clim(-120,-40)
	
	# plot fringe prediction timeseries
	#ax1.plot(times,scatf5, c='blue', linewidth='0.2', label='f5')
	ax1.plot(times,scatf4, c='purple', linewidth='0.4', label='f4')
	ax1.plot(times,scatf3, c='green', linewidth='0.4', label='f3')
	ax1.plot(times,scatf2, c='blue', linewidth='0.4', label='f2')
	ax1.plot(times,scatf1, c='black', linewidth='0.4', label='f1')
	#if plotspec < 1 and dur <= 3600:
开发者ID:andrew-lundgren,项目名称:ligo-detchar,代码行数:33,代码来源:scatMon3.py

示例4: single_plot

# 需要导入模块: from matplotlib.image import NonUniformImage [as 别名]
# 或者: from matplotlib.image.NonUniformImage import set_clim [as 别名]
def single_plot(data, x, y, axes=None, beta=None, cbar_label='',
                cmap=plt.get_cmap('RdBu'), vmin=None, vmax=None,
                phase_speeds=True, manual_locations=False, **kwargs):
    """
    Plot a single frame Time-Distance Diagram on physical axes.

    This function uses mpl NonUniformImage to plot a image using x and y arrays,
    it will also optionally over plot in contours beta lines.

    Parameters
    ----------
    data: np.ndarray
        The 2D image to plot
    x: np.ndarray
        The x coordinates
    y: np.ndarray
        The y coordinates
    axes: matplotlib axes instance [*optional*]
        The axes to plot the data on, if None, use plt.gca().
    beta: np.ndarray [*optional*]
        The array to contour over the top, default to none.
    cbar_label: string [*optional*]
        The title label for the colour bar, default to none.
    cmap: A matplotlib colour map instance [*optional*]
        The colourmap to use, default to 'RdBu'
    vmin: float [*optional*]
        The min scaling for the image, default to the image limits.
    vmax: float [*optional*]
        The max scaling for the image, default to the image limits.
    phase_speeds : bool
        Add phase speed lines to the plot
    manual_locations : bool
        Array for clabel locations.

    Returns
    -------
    None
    """
    if axes is None:
        axes = plt.gca()

    x = x[:xxlim]
    data = data[:,:xxlim]

    im = NonUniformImage(axes,interpolation='nearest',
                         extent=[x.min(),x.max(),y.min(),y.max()],rasterized=False)
    im.set_cmap(cmap)
    if vmin is None and vmax is None:
        lim = np.max([np.nanmax(data),
                  np.abs(np.nanmin(data))])
        im.set_clim(vmax=lim,vmin=-lim)
    else:
        im.set_clim(vmax=vmax,vmin=vmin)
    im.set_data(x,y,data)
    im.set_interpolation('nearest')

    axes.images.append(im)
    axes.set_xlim(x.min(),x.max())
    axes.set_ylim(y.min(),y.max())

    cax0 = make_axes_locatable(axes).append_axes("right", size="5%", pad=0.05)
    cbar0 = plt.colorbar(im, cax=cax0, ticks=mpl.ticker.MaxNLocator(7))
    cbar0.set_label(cbar_label)
    cbar0.solids.set_edgecolor("face")
    kwergs = {'levels': [1., 1/3., 1/5., 1/10., 1/20.]}
    kwergs.update(kwargs)

    if beta is not None:
        ct = axes.contour(x,y,beta[:,:xxlim],colors=['k'], **kwergs)
        plt.clabel(ct,fontsize=14,inline_spacing=3, manual=manual_locations,
                   fmt=mpl.ticker.FuncFormatter(betaswap))

    axes.set_xlabel("Time [s]")
    axes.set_ylabel("Height [Mm]")
开发者ID:Cadair,项目名称:VivaTalk,代码行数:76,代码来源:td_plotting_helpers.py


注:本文中的matplotlib.image.NonUniformImage.set_clim方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。