本文整理汇总了Python中ij.ImagePlus.setProcessor方法的典型用法代码示例。如果您正苦于以下问题:Python ImagePlus.setProcessor方法的具体用法?Python ImagePlus.setProcessor怎么用?Python ImagePlus.setProcessor使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ij.ImagePlus
的用法示例。
在下文中一共展示了ImagePlus.setProcessor方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: Random
# 需要导入模块: from ij import ImagePlus [as 别名]
# 或者: from ij.ImagePlus import setProcessor [as 别名]
Random().nextBytes(imp.getProcessor().getPixels())
imp.show()
# Example watershed
# 1 - Obtain an image
blobs = IJ.openImage("http://imagej.net/images/blobs.gif")
# IJ.run(blobs, "Histogram", "")
# Make a copy with the same properties as blobs image:
imp = blobs.createImagePlus()
hwin = HistogramWindow(blobs)
plotimage = hwin.getImagePlus()
ip = blobs.getProcessor().duplicate()
imp.setProcessor("blobs copy", ip)
# 2 - Apply a threshold: only zeros and ones
# Set the desired threshold range: keep from 0 to 74
ip.setThreshold(147, 147, ImageProcessor.NO_LUT_UPDATE)
# Call the Thresholder to convert the image to a mask
IJ.run(imp, "Convert to Mask", "")
# 3 - Apply watershed
# Create and run new EDM object, which is an Euclidean Distance Map (EDM)
# and run the watershed on the ImageProcessor:
EDM().toWatershed(ip)
# 4 - Show the watersheded image:
imp.show()
示例2: len
# 需要导入模块: from ij import ImagePlus [as 别名]
# 或者: from ij.ImagePlus import setProcessor [as 别名]
gd.showDialog()
## Does simple interpolation of the ROIs through the stack
if len(sliceList)>0:
sliceList.sort(reverse=True)
for sl in range(theImage.getNSlices()):
if (sl+1) < sliceList[-1]:
maskImage.setSliceWithoutUpdate(sliceList[-1])
activeIp = maskImage.getProcessor().duplicate()
elif (sl+1) > sliceList[0]:
maskImage.setSliceWithoutUpdate(sliceList[0])
activeIp = maskImage.getProcessor().duplicate()
else:
isFound = False
for mark in sliceList:
dist = sl+1 - mark
if dist >= 0 and not isFound:
isFound = True
refSlice = mark
maskImage.setSliceWithoutUpdate(refSlice)
activeIp = maskImage.getProcessor().duplicate()
maskImage.setSliceWithoutUpdate(sl+1)
maskImage.setProcessor(activeIp)
## Computes the overlay image
ic = ImageCalculator()
resultImage = ic.run("AND create stack",theImage,maskImage)
resultImage.show()
maskImage.close()
示例3: makeMask
# 需要导入模块: from ij import ImagePlus [as 别名]
# 或者: from ij.ImagePlus import setProcessor [as 别名]
def makeMask(self):
"""
This function makes the mask. The steps are (1) Minimum Filter - makes a darker boundary around beads (2) Autothresholding using the Huang algorithm - has some fuzzy logic and seems to work (3) Analyze particles with a size between 500-50000 and
circularity between 0.4 to 1.0; The mask generated is sometimes black on beads and white around. Then I need to invert the LUTs
"""
ipOriginal = self.stack.getProcessor(self.DIC_index)
ip = ipOriginal.duplicate()
imgUpdate = ImagePlus("New",ip)
imgUpdate.setProcessor("Mask",ip)
img0 = ImagePlus("Before",ipOriginal)
img0.show()
# Minimum filter
RankFilters().rank(ip,2,RankFilters.MIN)
img1 = ImagePlus("Filter",ip)
# Autothreshold - Huang algorithm
hist = ip.getHistogram()
lowTH = Auto_Threshold.Huang(hist)
ip.setThreshold(0,lowTH, ImageProcessor.BLACK_AND_WHITE_LUT)
img3 = ImagePlus("Thresholded",ip)
img3.show()
# Making a binary mask
IJ.run(img3,"Convert to Mask","")
if self._dialog("Invert Mask ??") is True: IJ.run("Invert LUT")
img3.updateAndDraw()
# The true mask after Particle Analysis; Creates a mask image around the particles
IJ.run(img3,"Analyze Particles...", "size=500-50000 circularity=0.40-1.00 show=Masks")
img1.close()
#img3.close()
# Editing the masks (filling holes and dilating it twice)
imgActive = IJ.getImage()
IJ.run(imgActive,"Convert to Mask","")
IJ.run(imgActive,"Fill Holes","")
for i in range(8): IJ.run(imgActive,"Dilate","")
ipActive = imgActive.getProcessor().convertToFloat()
# Saving the mask
maskFname = self.sourceDir + "\\" + self.title + '_mask'
IJ.saveAs(imgActive, "PNG", maskFname)
# Confirming that the image is masked and the histogram is correct
#IJ.run(imgActive, "Histogram", "")
#stats = ipActive.getStatistics()
pixels = ipActive.getPixels()
self.maskPixels = [pix/255 for pix in pixels]
self.areaMask = self.maskPixels.count(1)
# Checking if the image is fine. If not, returns option to skip
ImageCalculator().calculate("zero create", img0, imgActive)
skip = False
if self._dialog("Skip Image ??") is True: skip = True
IJ.run("Close All")
return self.maskPixels, skip