本文整理汇总了Python中holoviews.Columns.sort方法的典型用法代码示例。如果您正苦于以下问题:Python Columns.sort方法的具体用法?Python Columns.sort怎么用?Python Columns.sort使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类holoviews.Columns
的用法示例。
在下文中一共展示了Columns.sort方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_columns_sort_vdim_hm
# 需要导入模块: from holoviews import Columns [as 别名]
# 或者: from holoviews.Columns import sort [as 别名]
def test_columns_sort_vdim_hm(self):
xs_2 = np.array(self.xs_2)
columns = Columns(np.column_stack([self.xs, -xs_2]),
kdims=['x'], vdims=['y'])
columns_sorted = Columns(np.column_stack([self.xs[::-1], -xs_2[::-1]]),
kdims=['x'], vdims=['y'])
self.assertEqual(columns.sort('y'), columns_sorted)
示例2: test_columns_sort_heterogeneous_string
# 需要导入模块: from holoviews import Columns [as 别名]
# 或者: from holoviews.Columns import sort [as 别名]
def test_columns_sort_heterogeneous_string(self):
columns = Columns(zip(self.keys1, self.values1),
kdims=self.kdims, vdims=self.vdims)
keys = [('F',12), ('M',10), ('M',16)]
values = [(10, 0.8), (15, 0.8), (18, 0.6)]
columns_sorted = Columns(zip(keys, values),
kdims=self.kdims, vdims=self.vdims)
self.assertEqual(columns.sort(), columns_sorted)
示例3: test_columns_sort_vdim
# 需要导入模块: from holoviews import Columns [as 别名]
# 或者: from holoviews.Columns import sort [as 别名]
def test_columns_sort_vdim(self):
columns = Columns(pd.DataFrame({'x': self.xs, 'y': -self.ys}),
kdims=['x'], vdims=['y'])
columns_sorted = Columns(pd.DataFrame({'x': self.xs[::-1], 'y': -self.ys[::-1]}),
kdims=['x'], vdims=['y'])
self.assertEqual(columns.sort('y'), columns_sorted)
示例4: test_columns_sort_vdim_ht
# 需要导入模块: from holoviews import Columns [as 别名]
# 或者: from holoviews.Columns import sort [as 别名]
def test_columns_sort_vdim_ht(self):
columns = Columns({'x':self.xs, 'y':-self.ys},
kdims=['x'], vdims=['y'])
columns_sorted = Columns({'x':self.xs[::-1], 'y':-self.ys[::-1]},
kdims=['x'], vdims=['y'])
self.assertEqual(columns.sort('y'), columns_sorted)
示例5: HeterogeneousColumnTypes
# 需要导入模块: from holoviews import Columns [as 别名]
# 或者: from holoviews.Columns import sort [as 别名]
class HeterogeneousColumnTypes(HomogeneousColumnTypes):
"""
Tests for data formats that all columns to have varied types
"""
def init_data(self):
self.kdims = ['Gender', 'Age']
self.vdims = ['Weight', 'Height']
self.gender, self.age = ['M','M','F'], [10,16,12]
self.weight, self.height = [15,18,10], [0.8,0.6,0.8]
self.table = Columns({'Gender':self.gender, 'Age':self.age,
'Weight':self.weight, 'Height':self.height},
kdims=self.kdims, vdims=self.vdims)
super(HeterogeneousColumnTypes, self).init_data()
self.ys = np.linspace(0, 1, 11)
self.zs = np.sin(self.xs)
self.columns_ht = Columns({'x':self.xs, 'y':self.ys},
kdims=['x'], vdims=['y'])
# Test the constructor to be supported by all interfaces supporting
# heterogeneous column types.
def test_columns_ndelement_init_ht(self):
"Tests support for heterogeneous NdElement (backwards compatibility)"
columns = Columns(NdElement(zip(self.xs, self.ys), kdims=['x'], vdims=['y']))
self.assertTrue(isinstance(columns.data, self.data_instance_type))
def test_columns_dataframe_init_ht(self):
"Tests support for heterogeneous DataFrames"
if pd is None:
raise SkipTest("Pandas not available")
columns = Columns(pd.DataFrame({'x':self.xs, 'y':self.ys}), kdims=['x'], vdims=['y'])
self.assertTrue(isinstance(columns.data, self.data_instance_type))
# Test literal formats
def test_columns_uniq_dimvals_ht(self):
self.assertEqual(self.table.dimension_values('Gender', unique=True),
np.array(['M', 'F']))
def test_columns_implicit_indexing_init(self):
columns = Columns(self.ys, kdims=['x'], vdims=['y'])
self.assertTrue(isinstance(columns.data, self.data_instance_type))
def test_columns_tuple_init(self):
columns = Columns((self.xs, self.ys), kdims=['x'], vdims=['y'])
self.assertTrue(isinstance(columns.data, self.data_instance_type))
def test_columns_simple_zip_init(self):
columns = Columns(zip(self.xs, self.ys), kdims=['x'], vdims=['y'])
self.assertTrue(isinstance(columns.data, self.data_instance_type))
def test_columns_zip_init(self):
columns = Columns(zip(self.gender, self.age,
self.weight, self.height),
kdims=self.kdims, vdims=self.vdims)
self.assertTrue(isinstance(columns.data, self.data_instance_type))
def test_columns_odict_init(self):
columns = Columns(OrderedDict(zip(self.xs, self.ys)), kdims=['A'], vdims=['B'])
self.assertTrue(isinstance(columns.data, self.data_instance_type))
def test_columns_dict_init(self):
columns = Columns(dict(zip(self.xs, self.ys)), kdims=['A'], vdims=['B'])
self.assertTrue(isinstance(columns.data, self.data_instance_type))
# Operations
def test_columns_sort_vdim_ht(self):
columns = Columns({'x':self.xs, 'y':-self.ys},
kdims=['x'], vdims=['y'])
columns_sorted = Columns({'x':self.xs[::-1], 'y':-self.ys[::-1]},
kdims=['x'], vdims=['y'])
self.assertEqual(columns.sort('y'), columns_sorted)
def test_columns_sort_string_ht(self):
columns_sorted = Columns({'Gender':['F','M','M'], 'Age':[12,10,16],
'Weight':[10,15,18], 'Height':[0.8,0.8,0.6]},
kdims=self.kdims, vdims=self.vdims)
self.assertEqual(self.table.sort(), columns_sorted)
def test_columns_sample_ht(self):
samples = self.columns_ht.sample([0, 5, 10]).dimension_values('y')
self.assertEqual(samples, np.array([0, 0.5, 1]))
def test_columns_reduce_ht(self):
reduced = Columns({'Age':self.age, 'Weight':self.weight, 'Height':self.height},
kdims=self.kdims[1:], vdims=self.vdims)
self.assertEqual(self.table.reduce(['Gender'], np.mean), reduced)
def test_columns_1D_reduce_ht(self):
self.assertEqual(self.columns_ht.reduce('x', np.mean), np.float64(0.5))
def test_columns_2D_reduce_ht(self):
reduced = Columns({'Weight':[14.333333333333334], 'Height':[0.73333333333333339]},
kdims=[], vdims=self.vdims)
self.assertEqual(self.table.reduce(function=np.mean), reduced)
def test_columns_2D_partial_reduce_ht(self):
#.........这里部分代码省略.........
示例6: GridColumnsTest
# 需要导入模块: from holoviews import Columns [as 别名]
# 或者: from holoviews.Columns import sort [as 别名]
class GridColumnsTest(HomogeneousColumnTypes, ComparisonTestCase):
"""
Test of the NdColumns interface (mostly for backwards compatibility)
"""
def setUp(self):
self.restore_datatype = Columns.datatype
Columns.datatype = ['grid']
self.data_instance_type = dict
self.init_data()
def init_data(self):
self.xs = range(11)
self.xs_2 = [el**2 for el in self.xs]
self.y_ints = [i*2 for i in range(11)]
self.columns_hm = Columns((self.xs, self.y_ints),
kdims=['x'], vdims=['y'])
def test_columns_array_init_hm(self):
"Tests support for arrays (homogeneous)"
exception = "None of the available storage backends "\
"were able to support the supplied data format."
with self.assertRaisesRegexp(Exception, exception):
Columns(np.column_stack([self.xs, self.xs_2]),
kdims=['x'], vdims=['x2'])
def test_columns_dataframe_init_hm(self):
"Tests support for homogeneous DataFrames"
if pd is None:
raise SkipTest("Pandas not available")
exception = "None of the available storage backends "\
"were able to support the supplied data format."
with self.assertRaisesRegexp(Exception, exception):
Columns(pd.DataFrame({'x':self.xs, 'x2':self.xs_2}),
kdims=['x'], vdims=['x2'])
def test_columns_ndelement_init_hm(self):
"Tests support for homogeneous NdElement (backwards compatibility)"
exception = "None of the available storage backends "\
"were able to support the supplied data format."
with self.assertRaisesRegexp(Exception, exception):
Columns(NdElement(zip(self.xs, self.xs_2),
kdims=['x'], vdims=['x2']))
def test_columns_2D_aggregate_partial_hm(self):
array = np.random.rand(11, 11)
columns = Columns({'x':self.xs, 'y':self.y_ints, 'z': array},
kdims=['x', 'y'], vdims=['z'])
self.assertEqual(columns.aggregate(['x'], np.mean),
Columns({'x':self.xs, 'z': np.mean(array, axis=1)},
kdims=['x'], vdims=['z']))
def test_columns_2D_reduce_hm(self):
array = np.random.rand(11, 11)
columns = Columns({'x':self.xs, 'y':self.y_ints, 'z': array},
kdims=['x', 'y'], vdims=['z'])
self.assertEqual(np.array(columns.reduce(['x', 'y'], np.mean)),
np.mean(array))
def test_columns_add_dimensions_value_hm(self):
with self.assertRaisesRegexp(Exception, 'Cannot add key dimension to a dense representation.'):
self.columns_hm.add_dimension('z', 1, 0)
def test_columns_add_dimensions_values_hm(self):
table = self.columns_hm.add_dimension('z', 1, range(1,12), vdim=True)
self.assertEqual(table.vdims[1], 'z')
self.compare_arrays(table.dimension_values('z'), np.array(list(range(1,12))))
def test_columns_sort_vdim_hm(self):
exception = ('Compressed format cannot be sorted, either instantiate '
'in the desired order or use the expanded format.')
with self.assertRaisesRegexp(Exception, exception):
self.columns_hm.sort('y')
def test_columns_groupby(self):
self.assertEqual(self.columns_hm.groupby('x').keys(), list(self.xs))