当前位置: 首页>>代码示例>>Python>>正文


Python holoviews.Columns类代码示例

本文整理汇总了Python中holoviews.Columns的典型用法代码示例。如果您正苦于以下问题:Python Columns类的具体用法?Python Columns怎么用?Python Columns使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了Columns类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_columns_sort_vdim_hm

 def test_columns_sort_vdim_hm(self):
     xs_2 = np.array(self.xs_2)
     columns = Columns(np.column_stack([self.xs, -xs_2]),
                              kdims=['x'], vdims=['y'])
     columns_sorted = Columns(np.column_stack([self.xs[::-1], -xs_2[::-1]]),
                              kdims=['x'], vdims=['y'])
     self.assertEqual(columns.sort('y'), columns_sorted)
开发者ID:pittmiqi,项目名称:holoviews,代码行数:7,代码来源:testcolumns.py

示例2: test_columns_heterogeneous_aggregate

 def test_columns_heterogeneous_aggregate(self):
     columns = Columns(self.column_data, kdims=self.kdims,
                       vdims=self.vdims)
     aggregated = Columns(pd.DataFrame([('F', 10., 0.8), ('M', 16.5, 0.7)],
                                       columns=['Gender']+self.vdims),
                          kdims=self.kdims[:1], vdims=self.vdims)
     self.compare_columns(columns.aggregate(['Gender'], np.mean), aggregated)
开发者ID:stonebig,项目名称:holoviews,代码行数:7,代码来源:testcolumns.py

示例3: test_columns_2D_aggregate_partial_hm

 def test_columns_2D_aggregate_partial_hm(self):
     array = np.random.rand(11, 11)
     columns = Columns({'x':self.xs, 'y':self.y_ints, 'z': array},
                       kdims=['x', 'y'], vdims=['z'])
     self.assertEqual(columns.aggregate(['x'], np.mean),
                      Columns({'x':self.xs, 'z': np.mean(array, axis=1)},
                              kdims=['x'], vdims=['z']))
开发者ID:corinnebosley,项目名称:holoviews,代码行数:7,代码来源:testcolumns.py

示例4: test_columns_sort_heterogeneous_string

 def test_columns_sort_heterogeneous_string(self):
     columns = Columns(zip(self.keys1, self.values1),
                     kdims=self.kdims, vdims=self.vdims)
     keys =   [('F',12), ('M',10), ('M',16)]
     values = [(10, 0.8), (15, 0.8), (18, 0.6)]
     columns_sorted = Columns(zip(keys, values),
                              kdims=self.kdims, vdims=self.vdims)
     self.assertEqual(columns.sort(), columns_sorted)
开发者ID:stonebig,项目名称:holoviews,代码行数:8,代码来源:testcolumns.py

示例5: test_columns_heterogeneous_reduce

 def test_columns_heterogeneous_reduce(self):
     columns = Columns(self.column_data, kdims=self.kdims,
                       vdims=self.vdims)
     reduced_data = pd.DataFrame([(10, 15, 0.8), (12, 10, 0.8), (16, 18, 0.6)],
                                 columns=columns.dimensions(label=True)[1:])
     reduced = Columns(reduced_data, kdims=self.kdims[1:],
                       vdims=self.vdims)
     self.assertEqual(columns.reduce(['Gender'], np.mean), reduced)
开发者ID:stonebig,项目名称:holoviews,代码行数:8,代码来源:testcolumns.py

示例6: test_columns_heterogeneous_reduce2d

 def test_columns_heterogeneous_reduce2d(self):
     columns = Columns(self.column_data, kdims=self.kdims,
                       vdims=self.vdims)
     reduced_data = pd.DataFrame([d[1:] for d in self.column_data],
                                 columns=columns.dimensions(label=True)[1:])
     reduced = Columns(pd.DataFrame([(14.333333333333334, 0.73333333333333339)], columns=self.vdims),
                       kdims=[], vdims=self.vdims)
     self.assertEqual(columns.reduce(function=np.mean), reduced)
开发者ID:stonebig,项目名称:holoviews,代码行数:8,代码来源:testcolumns.py

示例7: test_columns_groupby

 def test_columns_groupby(self):
     columns = Columns(self.column_data, kdims=self.kdims,
                       vdims=self.vdims)
     cols = self.kdims + self.vdims
     group1 = pd.DataFrame(self.column_data[:2], columns=cols)
     group2 = pd.DataFrame(self.column_data[2:], columns=cols)
     grouped = HoloMap({'M': Columns(group1, kdims=['Age'], vdims=self.vdims),
                        'F': Columns(group2, kdims=['Age'], vdims=self.vdims)},
                       kdims=['Gender'])
     self.assertEqual(columns.groupby(['Gender']), grouped)
开发者ID:stonebig,项目名称:holoviews,代码行数:10,代码来源:testcolumns.py

示例8: init_data

    def init_data(self):
        self.kdims = ['Gender', 'Age']
        self.vdims = ['Weight', 'Height']
        self.gender, self.age = ['M','M','F'], [10,16,12]
        self.weight, self.height = [15,18,10], [0.8,0.6,0.8]
        self.table = Columns({'Gender':self.gender, 'Age':self.age,
                              'Weight':self.weight, 'Height':self.height},
                             kdims=self.kdims, vdims=self.vdims)

        super(HeterogeneousColumnTypes, self).init_data()
        self.ys = np.linspace(0, 1, 11)
        self.zs = np.sin(self.xs)
        self.columns_ht = Columns({'x':self.xs, 'y':self.ys},
                                  kdims=['x'], vdims=['y'])
开发者ID:pittmiqi,项目名称:holoviews,代码行数:14,代码来源:testcolumns.py

示例9: setUp

 def setUp(self):
     self.datatype = Columns.datatype
     Columns.datatype = ['dictionary', 'array']
     self.xs = range(11)
     self.ys = np.linspace(0, 1, 11)
     self.zs = np.sin(self.xs)
     self.keys1 =   [('M',10), ('M',16), ('F',12)]
     self.values1 = [(15, 0.8), (18, 0.6), (10, 0.8)]
     self.kdims = ['Gender', 'Age']
     self.vdims = ['Weight', 'Height']
     self.columns = Columns(dict(zip(self.xs, self.ys)),
                            kdims=['x'], vdims=['y'])
开发者ID:stonebig,项目名称:holoviews,代码行数:12,代码来源:testcolumns.py

示例10: HoloMapTest

class HoloMapTest(ComparisonTestCase):

    def setUp(self):
        self.xs = range(11)
        self.y_ints = [i*2 for i in range(11)]
        self.ys = np.linspace(0, 1, 11)
        self.columns = Columns(np.column_stack([self.xs, self.y_ints]),
                               kdims=['x'], vdims=['y'])


    def test_columns_collapse_heterogeneous(self):
        collapsed = HoloMap({i: Columns({'x':self.xs, 'y':self.ys*i},
                                        kdims=['x'], vdims=['y'])
                             for i in range(10)}, kdims=['z']).collapse('z', np.mean)
        expected = Columns({'x':self.xs, 'y':self.ys*4.5}, kdims=['x'], vdims=['y'])
        self.compare_columns(collapsed, expected)


    def test_columns_sample_homogeneous(self):
        samples = self.columns.sample([0, 5, 10]).dimension_values('y')
        self.assertEqual(samples, np.array([0, 10, 20]))
开发者ID:almarklein,项目名称:holoviews,代码行数:21,代码来源:testndmapping.py

示例11: test_columns_2d_partial_reduce

 def test_columns_2d_partial_reduce(self):
     columns = Columns((self.xs, self.ys, self.zs), kdims=['x', 'y'], vdims=['z'])
     self.assertEqual(columns.reduce(['y'], np.mean),
                      Columns((self.xs, self.zs), kdims=['x'], vdims=['z']))
开发者ID:stonebig,项目名称:holoviews,代码行数:4,代码来源:testcolumns.py

示例12: test_columns_2d_reduce

 def test_columns_2d_reduce(self):
     columns = Columns(pd.DataFrame({'x': self.xs, 'y': self.ys, 'z': self.zs}),
                       kdims=['x', 'y'], vdims=['z'])
     self.assertEqual(np.array(columns.reduce(['x', 'y'], np.mean)),
                      np.array(0.12828985192891))
开发者ID:stonebig,项目名称:holoviews,代码行数:5,代码来源:testcolumns.py

示例13: ColumnsNdElementTest

class ColumnsNdElementTest(ComparisonTestCase):
    """
    Test for the Chart baseclass methods.
    """

    def setUp(self):
        self.datatype = Columns.datatype
        Columns.datatype = ['dictionary', 'array']
        self.xs = range(11)
        self.ys = np.linspace(0, 1, 11)
        self.zs = np.sin(self.xs)
        self.keys1 =   [('M',10), ('M',16), ('F',12)]
        self.values1 = [(15, 0.8), (18, 0.6), (10, 0.8)]
        self.kdims = ['Gender', 'Age']
        self.vdims = ['Weight', 'Height']
        self.columns = Columns(dict(zip(self.xs, self.ys)),
                               kdims=['x'], vdims=['y'])

    def tearDown(self):
        Columns.datatype = self.datatype

    def test_columns_sort_vdim(self):
        columns = Columns(OrderedDict(zip(self.xs, -self.ys)),
                          kdims=['x'], vdims=['y'])
        columns_sorted = Columns(OrderedDict(zip(self.xs[::-1], -self.ys[::-1])),
                                 kdims=['x'], vdims=['y'])
        self.assertEqual(columns.sort('y'), columns_sorted)

    def test_columns_sort_heterogeneous_string(self):
        columns = Columns(zip(self.keys1, self.values1),
                        kdims=self.kdims, vdims=self.vdims)
        keys =   [('F',12), ('M',10), ('M',16)]
        values = [(10, 0.8), (15, 0.8), (18, 0.6)]
        columns_sorted = Columns(zip(keys, values),
                                 kdims=self.kdims, vdims=self.vdims)
        self.assertEqual(columns.sort(), columns_sorted)

    def test_columns_shape(self):
        self.assertEqual(self.columns.shape, (11, 2))

    def test_columns_range(self):
        self.assertEqual(self.columns.range('y'), (0., 1.))

    def test_columns_odict_construct(self):
        columns = Columns(OrderedDict(zip(self.xs, self.ys)), kdims=['A'], vdims=['B'])
        self.assertTrue(isinstance(columns.data, NdElement))

    def test_columns_closest(self):
        closest = self.columns.closest([0.51, 1, 9.9])
        self.assertEqual(closest, [1., 1., 10.])

    def test_columns_dict_construct(self):
        self.assertTrue(isinstance(self.columns.data, NdElement))

    def test_columns_ndelement_construct(self):
        columns = Columns(NdElement(zip(self.xs, self.ys)))
        self.assertTrue(isinstance(columns.data, NdElement))

    def test_columns_items_construct(self):
        columns = Columns(zip(self.keys1, self.values1),
                          kdims=self.kdims, vdims=self.vdims)
        self.assertTrue(isinstance(columns.data, NdElement))

    def test_columns_sample(self):
        samples = self.columns.sample([0, 5, 10]).dimension_values('y')
        self.assertEqual(samples, np.array([0, 0.5, 1]))

    def test_columns_index_row_gender(self):
        table = Columns(zip(self.keys1, self.values1),
                        kdims=self.kdims, vdims=self.vdims)
        indexed = Columns(OrderedDict([(('F', 12), (10, 0.8))]),
                          kdims=self.kdims, vdims=self.vdims)
        row = table['F',:]
        self.assertEquals(row, indexed)

    def test_columns_index_rows_gender(self):
        table = Columns(zip(self.keys1, self.values1),
                        kdims=self.kdims, vdims=self.vdims)
        row = table['M',:]
        indexed = Columns(OrderedDict([(('M', 10), (15, 0.8)),
                                       (('M', 16), (18, 0.6))]),
                             kdims=self.kdims, vdims=self.vdims)
        self.assertEquals(row, indexed)

    def test_columns_index_row_age(self):
        table = Columns(zip(self.keys1, self.values1),
                        kdims=self.kdims, vdims=self.vdims)
        indexed = Columns(OrderedDict([(('F', 12), (10, 0.8))]),
                          kdims=self.kdims, vdims=self.vdims)
        self.assertEquals(table[:, 12], indexed)

    def test_columns_index_item_table(self):
        table = Columns(zip(self.keys1, self.values1),
                        kdims=self.kdims, vdims=self.vdims)
        indexed = Columns(OrderedDict([(('F', 12), (10, 0.8))]),
                          kdims=self.kdims, vdims=self.vdims)
        self.assertEquals(table['F', 12], indexed)


    def test_columns_index_value1(self):
#.........这里部分代码省略.........
开发者ID:stonebig,项目名称:holoviews,代码行数:101,代码来源:testcolumns.py

示例14: test_columns_sort_vdim

 def test_columns_sort_vdim(self):
     columns = Columns(pd.DataFrame({'x': self.xs, 'y': -self.ys}),
                       kdims=['x'], vdims=['y'])
     columns_sorted = Columns(pd.DataFrame({'x': self.xs[::-1], 'y': -self.ys[::-1]}),
                              kdims=['x'], vdims=['y'])
     self.assertEqual(columns.sort('y'), columns_sorted)
开发者ID:stonebig,项目名称:holoviews,代码行数:6,代码来源:testcolumns.py

示例15: ColumnsDFrameTest

class ColumnsDFrameTest(ComparisonTestCase):

    def setUp(self):
        self.datatype = Columns.datatype
        Columns.datatype = ['dataframe']
        self.column_data = [('M',10, 15, 0.8), ('M',16, 18, 0.6),
                            ('F',12, 10, 0.8)]
        self.kdims = ['Gender', 'Age']
        self.vdims = ['Weight', 'Height']
        self.xs = range(11)
        self.ys = np.linspace(0, 1, 11)
        self.zs = np.sin(self.xs)
        self.columns = Columns(pd.DataFrame({'x': self.xs, 'y': self.ys}),
                               kdims=['x'], vdims=['y'])

    def tearDown(self):
        Columns.datatype = self.datatype

    def test_columns_range(self):
        self.assertEqual(self.columns.range('y'), (0., 1.))

    def test_columns_shape(self):
        self.assertEqual(self.columns.shape, (11, 2))

    def test_columns_closest(self):
        closest = self.columns.closest([0.51, 1, 9.9])
        self.assertEqual(closest, [1., 1., 10.])

    def test_columns_sample(self):
        samples = self.columns.sample([0, 5, 10]).dimension_values('y')
        self.assertEqual(samples, np.array([0, 0.5, 1]))

    def test_columns_df_construct(self):
        self.assertTrue(isinstance(self.columns.data, pd.DataFrame))

    def test_columns_tuple_list_construct(self):
        columns = Columns(self.column_data, kdims=self.kdims,
                          vdims=self.vdims)
        self.assertTrue(isinstance(self.columns.data, pd.DataFrame))

    def test_columns_slice(self):
        data = [('x', range(5, 9)), ('y', np.linspace(0.5, 0.8, 4))]
        columns_slice = Columns(pd.DataFrame.from_items(data),
                                kdims=['x'], vdims=['y'])
        self.assertEqual(self.columns[5:9], columns_slice)

    def test_columns_index_row_gender(self):
        columns = Columns(self.column_data, kdims=self.kdims,
                          vdims=self.vdims)
        row = columns['F',:]
        self.assertEquals(type(row), Columns)
        self.compare_columns(row, Columns(self.column_data[2:],
                                          kdims=self.kdims,
                                          vdims=self.vdims))

    def test_columns_index_rows_gender(self):
        columns = Columns(self.column_data, kdims=self.kdims,
                          vdims=self.vdims)
        row = columns['M',:]
        self.assertEquals(type(row), Columns)
        self.compare_columns(row, Columns(self.column_data[:2],
                                          kdims=self.kdims,
                                          vdims=self.vdims))

    def test_columns_index_row_age(self):
        columns = Columns(self.column_data, kdims=self.kdims,
                          vdims=self.vdims)
        row = columns[:, 12]
        self.assertEquals(type(row), Columns)
        self.compare_columns(row, Columns(self.column_data[2:],
                                          kdims=self.kdims,
                                          vdims=self.vdims))

    def test_columns_index_single_row(self):
        columns = Columns(self.column_data, kdims=self.kdims,
                          vdims=self.vdims)
        row = columns['F', 12]
        self.assertEquals(type(row), Columns)
        self.compare_columns(row, Columns(self.column_data[2:],
                                          kdims=self.kdims,
                                          vdims=self.vdims))

    def test_columns_index_value1(self):
        columns = Columns(self.column_data, kdims=self.kdims,
                          vdims=self.vdims)
        self.assertEquals(columns['F', 12, 'Weight'], 10)

    def test_columns_index_value2(self):
        columns = Columns(self.column_data, kdims=self.kdims,
                          vdims=self.vdims)
        self.assertEquals(columns['F', 12, 'Height'], 0.8)

    def test_columns_sort_vdim(self):
        columns = Columns(pd.DataFrame({'x': self.xs, 'y': -self.ys}),
                          kdims=['x'], vdims=['y'])
        columns_sorted = Columns(pd.DataFrame({'x': self.xs[::-1], 'y': -self.ys[::-1]}),
                                 kdims=['x'], vdims=['y'])
        self.assertEqual(columns.sort('y'), columns_sorted)

    def test_columns_sort_heterogeneous_string(self):
#.........这里部分代码省略.........
开发者ID:stonebig,项目名称:holoviews,代码行数:101,代码来源:testcolumns.py


注:本文中的holoviews.Columns类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。