当前位置: 首页>>代码示例>>Python>>正文


Python Columns.closest方法代码示例

本文整理汇总了Python中holoviews.Columns.closest方法的典型用法代码示例。如果您正苦于以下问题:Python Columns.closest方法的具体用法?Python Columns.closest怎么用?Python Columns.closest使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在holoviews.Columns的用法示例。


在下文中一共展示了Columns.closest方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: ColumnsDFrameTest

# 需要导入模块: from holoviews import Columns [as 别名]
# 或者: from holoviews.Columns import closest [as 别名]
class ColumnsDFrameTest(ComparisonTestCase):

    def setUp(self):
        self.datatype = Columns.datatype
        Columns.datatype = ['dataframe']
        self.column_data = [('M',10, 15, 0.8), ('M',16, 18, 0.6),
                            ('F',12, 10, 0.8)]
        self.kdims = ['Gender', 'Age']
        self.vdims = ['Weight', 'Height']
        self.xs = range(11)
        self.ys = np.linspace(0, 1, 11)
        self.zs = np.sin(self.xs)
        self.columns = Columns(pd.DataFrame({'x': self.xs, 'y': self.ys}),
                               kdims=['x'], vdims=['y'])

    def tearDown(self):
        Columns.datatype = self.datatype

    def test_columns_range(self):
        self.assertEqual(self.columns.range('y'), (0., 1.))

    def test_columns_shape(self):
        self.assertEqual(self.columns.shape, (11, 2))

    def test_columns_closest(self):
        closest = self.columns.closest([0.51, 1, 9.9])
        self.assertEqual(closest, [1., 1., 10.])

    def test_columns_sample(self):
        samples = self.columns.sample([0, 5, 10]).dimension_values('y')
        self.assertEqual(samples, np.array([0, 0.5, 1]))

    def test_columns_df_construct(self):
        self.assertTrue(isinstance(self.columns.data, pd.DataFrame))

    def test_columns_tuple_list_construct(self):
        columns = Columns(self.column_data, kdims=self.kdims,
                          vdims=self.vdims)
        self.assertTrue(isinstance(self.columns.data, pd.DataFrame))

    def test_columns_slice(self):
        data = [('x', range(5, 9)), ('y', np.linspace(0.5, 0.8, 4))]
        columns_slice = Columns(pd.DataFrame.from_items(data),
                                kdims=['x'], vdims=['y'])
        self.assertEqual(self.columns[5:9], columns_slice)

    def test_columns_index_row_gender(self):
        columns = Columns(self.column_data, kdims=self.kdims,
                          vdims=self.vdims)
        row = columns['F',:]
        self.assertEquals(type(row), Columns)
        self.compare_columns(row, Columns(self.column_data[2:],
                                          kdims=self.kdims,
                                          vdims=self.vdims))

    def test_columns_index_rows_gender(self):
        columns = Columns(self.column_data, kdims=self.kdims,
                          vdims=self.vdims)
        row = columns['M',:]
        self.assertEquals(type(row), Columns)
        self.compare_columns(row, Columns(self.column_data[:2],
                                          kdims=self.kdims,
                                          vdims=self.vdims))

    def test_columns_index_row_age(self):
        columns = Columns(self.column_data, kdims=self.kdims,
                          vdims=self.vdims)
        row = columns[:, 12]
        self.assertEquals(type(row), Columns)
        self.compare_columns(row, Columns(self.column_data[2:],
                                          kdims=self.kdims,
                                          vdims=self.vdims))

    def test_columns_index_single_row(self):
        columns = Columns(self.column_data, kdims=self.kdims,
                          vdims=self.vdims)
        row = columns['F', 12]
        self.assertEquals(type(row), Columns)
        self.compare_columns(row, Columns(self.column_data[2:],
                                          kdims=self.kdims,
                                          vdims=self.vdims))

    def test_columns_index_value1(self):
        columns = Columns(self.column_data, kdims=self.kdims,
                          vdims=self.vdims)
        self.assertEquals(columns['F', 12, 'Weight'], 10)

    def test_columns_index_value2(self):
        columns = Columns(self.column_data, kdims=self.kdims,
                          vdims=self.vdims)
        self.assertEquals(columns['F', 12, 'Height'], 0.8)

    def test_columns_sort_vdim(self):
        columns = Columns(pd.DataFrame({'x': self.xs, 'y': -self.ys}),
                          kdims=['x'], vdims=['y'])
        columns_sorted = Columns(pd.DataFrame({'x': self.xs[::-1], 'y': -self.ys[::-1]}),
                                 kdims=['x'], vdims=['y'])
        self.assertEqual(columns.sort('y'), columns_sorted)

    def test_columns_sort_heterogeneous_string(self):
#.........这里部分代码省略.........
开发者ID:stonebig,项目名称:holoviews,代码行数:103,代码来源:testcolumns.py

示例2: ColumnsNdElementTest

# 需要导入模块: from holoviews import Columns [as 别名]
# 或者: from holoviews.Columns import closest [as 别名]
class ColumnsNdElementTest(ComparisonTestCase):
    """
    Test for the Chart baseclass methods.
    """

    def setUp(self):
        self.datatype = Columns.datatype
        Columns.datatype = ['dictionary', 'array']
        self.xs = range(11)
        self.ys = np.linspace(0, 1, 11)
        self.zs = np.sin(self.xs)
        self.keys1 =   [('M',10), ('M',16), ('F',12)]
        self.values1 = [(15, 0.8), (18, 0.6), (10, 0.8)]
        self.kdims = ['Gender', 'Age']
        self.vdims = ['Weight', 'Height']
        self.columns = Columns(dict(zip(self.xs, self.ys)),
                               kdims=['x'], vdims=['y'])

    def tearDown(self):
        Columns.datatype = self.datatype

    def test_columns_sort_vdim(self):
        columns = Columns(OrderedDict(zip(self.xs, -self.ys)),
                          kdims=['x'], vdims=['y'])
        columns_sorted = Columns(OrderedDict(zip(self.xs[::-1], -self.ys[::-1])),
                                 kdims=['x'], vdims=['y'])
        self.assertEqual(columns.sort('y'), columns_sorted)

    def test_columns_sort_heterogeneous_string(self):
        columns = Columns(zip(self.keys1, self.values1),
                        kdims=self.kdims, vdims=self.vdims)
        keys =   [('F',12), ('M',10), ('M',16)]
        values = [(10, 0.8), (15, 0.8), (18, 0.6)]
        columns_sorted = Columns(zip(keys, values),
                                 kdims=self.kdims, vdims=self.vdims)
        self.assertEqual(columns.sort(), columns_sorted)

    def test_columns_shape(self):
        self.assertEqual(self.columns.shape, (11, 2))

    def test_columns_range(self):
        self.assertEqual(self.columns.range('y'), (0., 1.))

    def test_columns_odict_construct(self):
        columns = Columns(OrderedDict(zip(self.xs, self.ys)), kdims=['A'], vdims=['B'])
        self.assertTrue(isinstance(columns.data, NdElement))

    def test_columns_closest(self):
        closest = self.columns.closest([0.51, 1, 9.9])
        self.assertEqual(closest, [1., 1., 10.])

    def test_columns_dict_construct(self):
        self.assertTrue(isinstance(self.columns.data, NdElement))

    def test_columns_ndelement_construct(self):
        columns = Columns(NdElement(zip(self.xs, self.ys)))
        self.assertTrue(isinstance(columns.data, NdElement))

    def test_columns_items_construct(self):
        columns = Columns(zip(self.keys1, self.values1),
                          kdims=self.kdims, vdims=self.vdims)
        self.assertTrue(isinstance(columns.data, NdElement))

    def test_columns_sample(self):
        samples = self.columns.sample([0, 5, 10]).dimension_values('y')
        self.assertEqual(samples, np.array([0, 0.5, 1]))

    def test_columns_index_row_gender(self):
        table = Columns(zip(self.keys1, self.values1),
                        kdims=self.kdims, vdims=self.vdims)
        indexed = Columns(OrderedDict([(('F', 12), (10, 0.8))]),
                          kdims=self.kdims, vdims=self.vdims)
        row = table['F',:]
        self.assertEquals(row, indexed)

    def test_columns_index_rows_gender(self):
        table = Columns(zip(self.keys1, self.values1),
                        kdims=self.kdims, vdims=self.vdims)
        row = table['M',:]
        indexed = Columns(OrderedDict([(('M', 10), (15, 0.8)),
                                       (('M', 16), (18, 0.6))]),
                             kdims=self.kdims, vdims=self.vdims)
        self.assertEquals(row, indexed)

    def test_columns_index_row_age(self):
        table = Columns(zip(self.keys1, self.values1),
                        kdims=self.kdims, vdims=self.vdims)
        indexed = Columns(OrderedDict([(('F', 12), (10, 0.8))]),
                          kdims=self.kdims, vdims=self.vdims)
        self.assertEquals(table[:, 12], indexed)

    def test_columns_index_item_table(self):
        table = Columns(zip(self.keys1, self.values1),
                        kdims=self.kdims, vdims=self.vdims)
        indexed = Columns(OrderedDict([(('F', 12), (10, 0.8))]),
                          kdims=self.kdims, vdims=self.vdims)
        self.assertEquals(table['F', 12], indexed)


    def test_columns_index_value1(self):
#.........这里部分代码省略.........
开发者ID:stonebig,项目名称:holoviews,代码行数:103,代码来源:testcolumns.py

示例3: ColumnsNdArrayTest

# 需要导入模块: from holoviews import Columns [as 别名]
# 或者: from holoviews.Columns import closest [as 别名]
class ColumnsNdArrayTest(ComparisonTestCase):

    def setUp(self):
        self.xs = range(11)
        self.ys = np.linspace(0, 1, 11)
        self.zs = np.sin(self.xs)
        self.columns = Columns((self.xs, self.ys), kdims=['x'], vdims=['y'])

    def test_columns_shape(self):
        self.assertEqual(self.columns.shape, (11, 2))

    def test_columns_range(self):
        self.assertEqual(self.columns.range('y'), (0., 1.))

    def test_columns_closest(self):
        closest = self.columns.closest([0.51, 1, 9.9])
        self.assertEqual(closest, [1., 1., 10.])

    def test_columns_values_construct(self):
        columns = Columns(self.ys)
        self.assertTrue(isinstance(columns.data, np.ndarray))

    def test_columns_tuple_construct(self):
        columns = Columns((self.xs, self.ys))
        self.assertTrue(isinstance(columns.data, np.ndarray))

    def test_columns_array_construct(self):
        columns = Columns(np.column_stack([self.xs, self.ys]))
        self.assertTrue(isinstance(columns.data, np.ndarray))

    def test_columns_tuple_list_construct(self):
        columns = Columns(zip(self.xs, self.ys))
        self.assertTrue(isinstance(columns.data, np.ndarray))

    def test_columns_sort_vdim(self):
        columns = Columns((self.xs, -self.ys), kdims=['x'], vdims=['y'])
        columns_sorted = Columns((self.xs[::-1], -self.ys[::-1]),
                                 kdims=['x'], vdims=['y'])
        self.assertEqual(columns.sort('y'), columns_sorted)

    def test_columns_index(self):
        self.assertEqual(self.columns[5], self.ys[5])

    def test_columns_slice(self):
        columns_slice = Columns(zip(range(5, 9), np.linspace(0.5,0.8, 4)),
                                kdims=['x'], vdims=['y'])
        self.assertEqual(self.columns[5:9], columns_slice)

    def test_columns_closest(self):
        closest = self.columns.closest([0.51, 1, 9.9])
        self.assertEqual(closest, [1., 1., 10.])

    def test_columns_getitem_column(self):
        self.compare_arrays(self.columns['y'], self.ys)

    def test_columns_sample(self):
        samples = self.columns.sample([0, 5, 10]).dimension_values('y')
        self.assertEqual(samples, np.array([0, 0.5, 1]))

    def test_columns_add_dimensions_value(self):
        table = Columns((self.xs, self.ys),
                        kdims=['x'], vdims=['y'])
        table = table.add_dimension('z', 1, 0)
        self.assertEqual(table.kdims[1], 'z')
        self.compare_arrays(table.dimension_values('z'), np.zeros(len(table)))

    def test_columns_add_dimensions_values(self):
        table = Columns((self.xs, self.ys),
                        kdims=['x'], vdims=['y'])
        table = table.add_dimension('z', 1, range(1,12))
        self.assertEqual(table.kdims[1], 'z')
        self.compare_arrays(table.dimension_values('z'), np.array(list(range(1,12))))

    def test_columns_collapse(self):
        collapsed = HoloMap({i: Columns((self.xs, self.ys*i), kdims=['x'], vdims=['y'])
                             for i in range(10)}, kdims=['z']).collapse('z', np.mean)
        self.compare_columns(collapsed, Columns((self.xs, self.ys*4.5), kdims=['x'], vdims=['y']))

    def test_columns_1d_reduce(self):
        columns = Columns((self.xs, self.ys), kdims=['x'], vdims=['y'])
        self.assertEqual(columns.reduce('x', np.mean), np.float64(0.5))

    def test_columns_2d_reduce(self):
        columns = Columns((self.xs, self.ys, self.zs), kdims=['x', 'y'], vdims=['z'])
        self.assertEqual(np.array(columns.reduce(['x', 'y'], np.mean)),
                         np.array(0.12828985192891))

    def test_columns_2d_partial_reduce(self):
        columns = Columns((self.xs, self.ys, self.zs), kdims=['x', 'y'], vdims=['z'])
        self.assertEqual(columns.reduce(['y'], np.mean),
                         Columns((self.xs, self.zs), kdims=['x'], vdims=['z']))

    def test_columns_2d_aggregate_partial(self):
        columns = Columns((self.xs, self.ys, self.zs), kdims=['x', 'y'], vdims=['z'])
        self.assertEqual(columns.aggregate(['x'], np.mean),
                         Columns((self.xs, self.zs), kdims=['x'], vdims=['z']))

    def test_columns_array(self):
        self.assertEqual(self.columns.array(), np.column_stack([self.xs, self.ys]))
开发者ID:stonebig,项目名称:holoviews,代码行数:101,代码来源:testcolumns.py

示例4: HomogeneousColumnTypes

# 需要导入模块: from holoviews import Columns [as 别名]
# 或者: from holoviews.Columns import closest [as 别名]
class HomogeneousColumnTypes(object):
    """
    Tests for data formats that require all columns to have the same
    type (e.g numpy arrays)
    """

    def setUp(self):
        self.restore_datatype = Columns.datatype
        self.data_instance_type = None

    def init_data(self):
        self.xs = range(11)
        self.xs_2 = [el**2 for el in self.xs]

        self.y_ints = [i*2 for i in range(11)]
        self.columns_hm = Columns(np.column_stack([self.xs, self.y_ints]),
                                  kdims=['x'], vdims=['y'])

    def tearDown(self):
        Columns.datatype = self.restore_datatype

    # Test the array constructor (homogenous data) to be supported by
    # all interfaces.

    def test_columns_array_init_hm(self):
        "Tests support for arrays (homogeneous)"
        columns = Columns(np.column_stack([self.xs, self.xs_2]),
                          kdims=['x'], vdims=['x2'])
        self.assertTrue(isinstance(columns.data, self.data_instance_type))

    def test_columns_ndelement_init_hm(self):
        "Tests support for homogeneous NdElement (backwards compatibility)"
        columns = Columns(NdElement(zip(self.xs, self.xs_2),
                                    kdims=['x'], vdims=['x2']))
        self.assertTrue(isinstance(columns.data, self.data_instance_type))

    def test_columns_dataframe_init_hm(self):
        "Tests support for homogeneous DataFrames"
        if pd is None:
            raise SkipTest("Pandas not available")
        columns = Columns(pd.DataFrame({'x':self.xs, 'x2':self.xs_2}),
                          kdims=['x'], vdims=[ 'x2'])
        self.assertTrue(isinstance(columns.data, self.data_instance_type))

    # Properties and information

    def test_columns_shape(self):
        self.assertEqual(self.columns_hm.shape, (11, 2))

    def test_columns_range(self):
        self.assertEqual(self.columns_hm.range('y'), (0, 20))

    def test_columns_closest(self):
        closest = self.columns_hm.closest([0.51, 1, 9.9])
        self.assertEqual(closest, [1., 1., 10.])

    # Operations

    def test_columns_sort_vdim_hm(self):
        xs_2 = np.array(self.xs_2)
        columns = Columns(np.column_stack([self.xs, -xs_2]),
                                 kdims=['x'], vdims=['y'])
        columns_sorted = Columns(np.column_stack([self.xs[::-1], -xs_2[::-1]]),
                                 kdims=['x'], vdims=['y'])
        self.assertEqual(columns.sort('y'), columns_sorted)

    def test_columns_sample_hm(self):
        samples = self.columns_hm.sample([0, 5, 10]).dimension_values('y')
        self.assertEqual(samples, np.array([0, 10, 20]))

    def test_columns_array_hm(self):
        self.assertEqual(self.columns_hm.array(),
                         np.column_stack([self.xs, self.y_ints]))

    def test_columns_add_dimensions_value_hm(self):
        table = self.columns_hm.add_dimension('z', 1, 0)
        self.assertEqual(table.kdims[1], 'z')
        self.compare_arrays(table.dimension_values('z'), np.zeros(len(table)))

    def test_columns_add_dimensions_values_hm(self):
        table =  self.columns_hm.add_dimension('z', 1, range(1,12))
        self.assertEqual(table.kdims[1], 'z')
        self.compare_arrays(table.dimension_values('z'), np.array(list(range(1,12))))


    def test_columns_slice_hm(self):
        columns_slice = Columns({'x':range(5, 9), 'y':[2*i for i in range(5, 9)]},
                                kdims=['x'], vdims=['y'])
        self.assertEqual(self.columns_hm[5:9], columns_slice)

    def test_columns_1D_reduce_hm(self):
        columns = Columns({'x':self.xs, 'y':self.y_ints}, kdims=['x'], vdims=['y'])
        self.assertEqual(columns.reduce('x', np.mean), 10)

    def test_columns_2D_reduce_hm(self):
        columns = Columns({'x':self.xs, 'y':self.y_ints, 'z':[el**2 for el in self.y_ints]},
                          kdims=['x', 'y'], vdims=['z'])
        self.assertEqual(np.array(columns.reduce(['x', 'y'], np.mean)),
                         np.array(140))

#.........这里部分代码省略.........
开发者ID:pittmiqi,项目名称:holoviews,代码行数:103,代码来源:testcolumns.py


注:本文中的holoviews.Columns.closest方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。