当前位置: 首页>>代码示例>>Python>>正文


Python History.add_population方法代码示例

本文整理汇总了Python中history.History.add_population方法的典型用法代码示例。如果您正苦于以下问题:Python History.add_population方法的具体用法?Python History.add_population怎么用?Python History.add_population使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在history.History的用法示例。


在下文中一共展示了History.add_population方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: Algorithm

# 需要导入模块: from history import History [as 别名]
# 或者: from history.History import add_population [as 别名]
class Algorithm(object):
    """
    Runs the wintermute algorithm
    """

    def __init__(self, model, options):
        """
        Initialize the algorithm
        :return: None
        """
        self._model = model
        self._options = options
        self._history = History()
        self._surrogate = None
        self._rnd = None

    def run(self):
        """
        Run the optimization algorithm
        :return: The run history
        :rtype: History
        """
        self._rnd = Random()
        # TODO (JLD): Set the seed from the options
        self._rnd.seed()
        # Determine the initial population size based on the requirements for an initial surrogate model
        parent_pop = self.get_initial_population()

        # Evaluate the initial population
        self.evaluate(parent_pop)
        self._history.add_population(parent_pop)

        # Generate a surrogate model
        self._surrogate = Surrogate(parent_pop)

        # Apply the moving operators to generate a child population
        self.sort_population(parent_pop)
        pop_size = self.culling_function(len(parent_pop))
        child_pop = [ind.copy() for ind in parent_pop[0:pop_size]]

        # Flag children for movement

        for ind in child_pop:
            if


        # Sort the parent population and using the culling function, select the N+1 population size of individual
        # to apply the moving operators on
        # flag individuals for movement
        # Apply the global moving operator
        # Apply the local moving operator
        # Sort the combined parent and child population and select the best N+1 population size individuals
        # to become the new parent population
        # Check convergence (depends on dynamic culling functions as well)
        # Repeat
        pass

    def set_model(self, model):
        """
        Set the model for the algorithm to use
        :param model: The model to set
        :type model: Model
        :return: None
        """
        self._model = model

    def set_options(self, options):
        """
        Set the algorithm options
        :param options: The options to set
        :type options: Options
        :return: None
        """
        self._options = options

    def get_initial_population(self):
        """
        Generate an initial populaion
        :return: An initial population
        :rtype: list(Individual)
        """
        # Determine the initial population size
        # Initial popualtion size depends on the number of dimensions and minimum number of points
        # to generate an initial surrogate model
        # Rule of thumb (D+1)(D+2)
        # Require 2x the number of points 1) L2 Orthogonal Array 2) Latin Hypercube
        # TODO (JLD): Look into DOE methods for large dimensionality space

        # Given the model bounds, first generate an L2 orthogonal array DOE of size (n/2) and initialize
        # the individuals at those points, and add them to the list.

        # Then for the remaining n/2 individual, initialize them using a latin hypercube sampling and add them
        # to the list

        # return the population
        return []

    def get_initial_population_size(self):
        """
        Get the initial population size
#.........这里部分代码省略.........
开发者ID:jldaniel,项目名称:Wintermute,代码行数:103,代码来源:algorithm.py


注:本文中的history.History.add_population方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。