本文整理汇总了Python中fnss.topologies.topology.Topology.remove_edge方法的典型用法代码示例。如果您正苦于以下问题:Python Topology.remove_edge方法的具体用法?Python Topology.remove_edge怎么用?Python Topology.remove_edge使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类fnss.topologies.topology.Topology
的用法示例。
在下文中一共展示了Topology.remove_edge方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: extended_barabasi_albert_topology
# 需要导入模块: from fnss.topologies.topology import Topology [as 别名]
# 或者: from fnss.topologies.topology.Topology import remove_edge [as 别名]
#.........这里部分代码省略.........
it. The node i is then connected to a new node randomly selected with
probability :math:`\Pi(i)`,
with probability :math:`1-p-q` add a new node and attach it to m nodes of
the existing topology selected with probability :math:`\Pi(i)`
Repeat the previous step until the topology comprises n nodes in total.
Parameters
----------
n : int
Number of nodes
m : int
Number of edges to attach from a new node to existing nodes
m0 : int
Number of edges initially attached to the network
p : float
The probability that new links are added
q : float
The probability that existing links are rewired
seed : int, optional
Seed for random number generator (default=None).
Returns
-------
G : Topology
References
----------
.. [1] A. L. Barabasi and R. Albert "Topology of evolving networks: local
events and universality", Physical Review Letters 85(24), 2000.
"""
def calc_pi(G):
"""Calculate extended-BA Pi function for all nodes of the graph"""
degree = dict(G.degree())
den = float(sum(degree.values()) + G.number_of_nodes())
return {node: (degree[node] + 1) / den for node in G.nodes()}
# input parameters
if n < 1 or m < 1 or m0 < 1:
raise ValueError('n, m and m0 must be a positive integer')
if m >= m0:
raise ValueError('m must be <= m0')
if n < m0:
raise ValueError('n must be > m0')
if p > 1 or p < 0:
raise ValueError('p must be included between 0 and 1')
if q > 1 or q < 0:
raise ValueError('q must be included between 0 and 1')
if p + q > 1:
raise ValueError('p + q must be <= 1')
if seed is not None:
random.seed(seed)
G = Topology(type='extended_ba')
G.name = "ext_ba_topology(%d, %d, %d, %f, %f)" % (n, m, m0, p, q)
# Step 1: Add m0 isolated nodes
G.add_nodes_from(range(m0))
while G.number_of_nodes() < n:
pi = calc_pi(G)
r = random.random()
if r <= p:
# add m new links with probability p
n_nodes = G.number_of_nodes()
n_edges = G.number_of_edges()
max_n_edges = (n_nodes * (n_nodes - 1)) / 2
if n_edges + m > max_n_edges: # cannot add m links
continue # rewire or add nodes
new_links = 0
while new_links < m:
u = random_from_pdf(pi)
v = random_from_pdf(pi)
if u is not v and not G.has_edge(u, v):
G.add_edge(u, v)
new_links += 1
elif r > p and r <= p + q:
# rewire m links with probability q
rewired_links = 0
while rewired_links < m:
i = random.choice(list(G.nodes())) # pick up node randomly (uniform)
if len(G.adj[i]) is 0: # if i has no edges, I cannot rewire
break
j = random.choice(list(G.adj[i].keys())) # node to be disconnected
k = random_from_pdf(pi) # new node to be connected
if i is not k and j is not k and not G.has_edge(i, k):
G.remove_edge(i, j)
G.add_edge(i, k)
rewired_links += 1
else:
# add a new node with probability 1 - p - q
new_node = G.number_of_nodes()
G.add_node(new_node)
new_links = 0
while new_links < m:
existing_node = random_from_pdf(pi)
if not G.has_edge(new_node, existing_node):
G.add_edge(new_node, existing_node)
new_links += 1
return G