本文整理汇总了Python中fnss.topologies.topology.Topology.node[v]['type']方法的典型用法代码示例。如果您正苦于以下问题:Python Topology.node[v]['type']方法的具体用法?Python Topology.node[v]['type']怎么用?Python Topology.node[v]['type']使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类fnss.topologies.topology.Topology
的用法示例。
在下文中一共展示了Topology.node[v]['type']方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: star_topology
# 需要导入模块: from fnss.topologies.topology import Topology [as 别名]
# 或者: from fnss.topologies.topology.Topology import node[v]['type'] [as 别名]
def star_topology(n):
"""
Return a star (a.k.a hub-and-spoke) topology of :math:`n+1` nodes
The root (hub) node has id 0 while all leaf (spoke) nodes have id
:math:`(1, n+1)`.
Each node has the attribute type which can either be *root* (for node 0) or
*leaf* for all other nodes
Parameters
----------
n : int
The number of leaf nodes
Returns
-------
topology : A Topology object
"""
if not isinstance(n, int):
raise TypeError('n argument must be of int type')
if n < 1:
raise ValueError('n argument must be a positive integer')
G = Topology(nx.star_graph(n))
G.name = "star_topology(%d)" % (n)
G.graph['type'] = 'star'
G.node[0]['type'] = 'root'
for v in range(1, n + 1):
G.node[v]['type'] = 'leaf'
return G
示例2: k_ary_tree_topology
# 需要导入模块: from fnss.topologies.topology import Topology [as 别名]
# 或者: from fnss.topologies.topology.Topology import node[v]['type'] [as 别名]
def k_ary_tree_topology(k, h):
"""
Return a balanced k-ary tree topology of with depth h
Each node has two attributes:
* type: which can either be *root*, *intermediate* or *leaf*
* depth:math:`(0, h)` the height of the node in the tree, where 0 is the
root and h are leaves.
Parameters
----------
k : int
The branching factor of the tree
h : int
The height or depth of the tree
Returns
-------
topology : A Topology object
"""
if not isinstance(k, int) or not isinstance(h, int):
raise TypeError('k and h arguments must be of int type')
if k <= 1:
raise ValueError("Invalid k parameter. It should be > 1")
if h < 1:
raise ValueError("Invalid h parameter. It should be >=1")
G = Topology(nx.balanced_tree(k, h))
G.name = "k_ary_tree_topology(%d,%d)" % (k, h)
G.graph['type'] = 'tree'
G.graph['k'] = k
G.graph['h'] = h
G.node[0]['type'] = 'root'
G.node[0]['depth'] = 0
# Iterate through the tree to assign labels to nodes
v = 1
for depth in range(1, h + 1):
for _ in range(k**depth):
G.node[v]['depth'] = depth
if depth == h:
G.node[v]['type'] = 'leaf'
else:
G.node[v]['type'] = 'intermediate'
v += 1
return G
示例3: dumbbell_topology
# 需要导入模块: from fnss.topologies.topology import Topology [as 别名]
# 或者: from fnss.topologies.topology.Topology import node[v]['type'] [as 别名]
def dumbbell_topology(m1, m2):
"""
Return a dumbbell topology consisting of two star topologies
connected by a path.
More precisely, two star graphs :math:`K_{m1}` form the left and right
bells, and are connected by a path :math:`P_{m2}`.
The :math:`2*m1+m2` nodes are numbered as follows.
* :math:`0,...,m1-1` for the left barbell,
* :math:`m1,...,m1+m2-1` for the path,
* :math:`m1+m2,...,2*m1+m2-1` for the right barbell.
The 3 subgraphs are joined via the edges :math:`(m1-1,m1)` and
:math:`(m1+m2-1,m1+m2)`. If m2 = 0, this is merely two star topologies
joined together.
Please notice that this dumbbell topology is different from the barbell
graph generated by networkx's barbell_graph function. That barbell graph
consists of two complete graphs connected by a path. This consists of two
stars whose roots are connected by a path. This dumbbell topology is
particularly useful for simulating transport layer protocols.
All nodes and edges of this topology have an attribute *type* which can be
either *right bell*, *core* or *left_bell*
Parameters
----------
m1 : int
The number of nodes in each bell
m2 : int
The number of nodes in the path
Returns
-------
topology : A Topology object
"""
if not isinstance(m1, int) or not isinstance(m2, int):
raise TypeError('m1 and m2 arguments must be of int type')
if m1 < 2:
raise ValueError("Invalid graph description, m1 should be >= 2")
if m2 < 1:
raise ValueError("Invalid graph description, m2 should be >= 1")
G = Topology(type='dumbbell')
G.name = "dumbbell_topology(%d,%d)" % (m1, m2)
# left bell
G.add_node(m1)
for v in range(m1):
G.add_node(v, type='left_bell')
G.add_edge(v, m1, type='left_bell')
# right bell
for v in range(m1):
G.add_node(v + m1 + m2, type='right_bell')
G.add_edge(v + m1 + m2, m1 + m2 - 1, type='right_bell')
# connecting path
for v in range(m1, m1 + m2 - 1):
G.node[v]['type'] = 'core'
G.add_edge(v, v + 1, type='core')
G.node[m1 + m2 - 1]['type'] = 'core'
return G