本文整理汇总了Python中fnss.topologies.topology.Topology.node[m1+m2-1]['type']方法的典型用法代码示例。如果您正苦于以下问题:Python Topology.node[m1+m2-1]['type']方法的具体用法?Python Topology.node[m1+m2-1]['type']怎么用?Python Topology.node[m1+m2-1]['type']使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类fnss.topologies.topology.Topology
的用法示例。
在下文中一共展示了Topology.node[m1+m2-1]['type']方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: dumbbell_topology
# 需要导入模块: from fnss.topologies.topology import Topology [as 别名]
# 或者: from fnss.topologies.topology.Topology import node[m1+m2-1]['type'] [as 别名]
def dumbbell_topology(m1, m2):
"""
Return a dumbbell topology consisting of two star topologies
connected by a path.
More precisely, two star graphs :math:`K_{m1}` form the left and right
bells, and are connected by a path :math:`P_{m2}`.
The :math:`2*m1+m2` nodes are numbered as follows.
* :math:`0,...,m1-1` for the left barbell,
* :math:`m1,...,m1+m2-1` for the path,
* :math:`m1+m2,...,2*m1+m2-1` for the right barbell.
The 3 subgraphs are joined via the edges :math:`(m1-1,m1)` and
:math:`(m1+m2-1,m1+m2)`. If m2 = 0, this is merely two star topologies
joined together.
Please notice that this dumbbell topology is different from the barbell
graph generated by networkx's barbell_graph function. That barbell graph
consists of two complete graphs connected by a path. This consists of two
stars whose roots are connected by a path. This dumbbell topology is
particularly useful for simulating transport layer protocols.
All nodes and edges of this topology have an attribute *type* which can be
either *right bell*, *core* or *left_bell*
Parameters
----------
m1 : int
The number of nodes in each bell
m2 : int
The number of nodes in the path
Returns
-------
topology : A Topology object
"""
if not isinstance(m1, int) or not isinstance(m2, int):
raise TypeError('m1 and m2 arguments must be of int type')
if m1 < 2:
raise ValueError("Invalid graph description, m1 should be >= 2")
if m2 < 1:
raise ValueError("Invalid graph description, m2 should be >= 1")
G = Topology(type='dumbbell')
G.name = "dumbbell_topology(%d,%d)" % (m1, m2)
# left bell
G.add_node(m1)
for v in range(m1):
G.add_node(v, type='left_bell')
G.add_edge(v, m1, type='left_bell')
# right bell
for v in range(m1):
G.add_node(v + m1 + m2, type='right_bell')
G.add_edge(v + m1 + m2, m1 + m2 - 1, type='right_bell')
# connecting path
for v in range(m1, m1 + m2 - 1):
G.node[v]['type'] = 'core'
G.add_edge(v, v + 1, type='core')
G.node[m1 + m2 - 1]['type'] = 'core'
return G