本文整理汇总了Python中fnss.topologies.topology.Topology.graph['type']方法的典型用法代码示例。如果您正苦于以下问题:Python Topology.graph['type']方法的具体用法?Python Topology.graph['type']怎么用?Python Topology.graph['type']使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类fnss.topologies.topology.Topology
的用法示例。
在下文中一共展示了Topology.graph['type']方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: star_topology
# 需要导入模块: from fnss.topologies.topology import Topology [as 别名]
# 或者: from fnss.topologies.topology.Topology import graph['type'] [as 别名]
def star_topology(n):
"""
Return a star (a.k.a hub-and-spoke) topology of :math:`n+1` nodes
The root (hub) node has id 0 while all leaf (spoke) nodes have id
:math:`(1, n+1)`.
Each node has the attribute type which can either be *root* (for node 0) or
*leaf* for all other nodes
Parameters
----------
n : int
The number of leaf nodes
Returns
-------
topology : A Topology object
"""
if not isinstance(n, int):
raise TypeError('n argument must be of int type')
if n < 1:
raise ValueError('n argument must be a positive integer')
G = Topology(nx.star_graph(n))
G.name = "star_topology(%d)" % (n)
G.graph['type'] = 'star'
G.node[0]['type'] = 'root'
for v in range(1, n + 1):
G.node[v]['type'] = 'leaf'
return G
示例2: k_ary_tree_topology
# 需要导入模块: from fnss.topologies.topology import Topology [as 别名]
# 或者: from fnss.topologies.topology.Topology import graph['type'] [as 别名]
def k_ary_tree_topology(k, h):
"""
Return a balanced k-ary tree topology of with depth h
Each node has two attributes:
* type: which can either be *root*, *intermediate* or *leaf*
* depth:math:`(0, h)` the height of the node in the tree, where 0 is the
root and h are leaves.
Parameters
----------
k : int
The branching factor of the tree
h : int
The height or depth of the tree
Returns
-------
topology : A Topology object
"""
if not isinstance(k, int) or not isinstance(h, int):
raise TypeError('k and h arguments must be of int type')
if k <= 1:
raise ValueError("Invalid k parameter. It should be > 1")
if h < 1:
raise ValueError("Invalid h parameter. It should be >=1")
G = Topology(nx.balanced_tree(k, h))
G.name = "k_ary_tree_topology(%d,%d)" % (k, h)
G.graph['type'] = 'tree'
G.graph['k'] = k
G.graph['h'] = h
G.node[0]['type'] = 'root'
G.node[0]['depth'] = 0
# Iterate through the tree to assign labels to nodes
v = 1
for depth in range(1, h + 1):
for _ in range(k**depth):
G.node[v]['depth'] = depth
if depth == h:
G.node[v]['type'] = 'leaf'
else:
G.node[v]['type'] = 'intermediate'
v += 1
return G
示例3: full_mesh_topology
# 需要导入模块: from fnss.topologies.topology import Topology [as 别名]
# 或者: from fnss.topologies.topology.Topology import graph['type'] [as 别名]
def full_mesh_topology(n):
"""
Return a fully connected mesh topology of n nodes
Parameters
----------
n : int
The number of nodes
Returns
-------
topology : A Topology object
"""
if not isinstance(n, int):
raise TypeError('n argument must be of int type')
if n < 1:
raise ValueError('n argument must be a positive integer')
G = Topology(nx.complete_graph(n))
G.name = "full_mesh_topology(%d)" % (n)
G.graph['type'] = 'full_mesh'
return G
示例4: line_topology
# 需要导入模块: from fnss.topologies.topology import Topology [as 别名]
# 或者: from fnss.topologies.topology.Topology import graph['type'] [as 别名]
def line_topology(n):
"""
Return a line topology of n nodes
Parameters
----------
n : int
The number of nodes
Returns
-------
topology : A Topology object
"""
if not isinstance(n, int):
raise TypeError('n argument must be of int type')
if n < 1:
raise ValueError('n argument must be a positive integer')
G = Topology(nx.path_graph(n))
G.name = "line_topology(%d)" % (n)
G.graph['type'] = 'line'
return G
示例5: erdos_renyi_topology
# 需要导入模块: from fnss.topologies.topology import Topology [as 别名]
# 或者: from fnss.topologies.topology.Topology import graph['type'] [as 别名]
def erdos_renyi_topology(n, p, seed=None, fast=False):
r"""Return a random graph :math:`G_{n,p}` (Erdos-Renyi graph, binomial
graph).
Chooses each of the possible edges with probability p.
Parameters
----------
n : int
The number of nodes.
p : float
Probability for edge creation.
seed : int, optional
Seed for random number generator (default=None).
fast : boolean, optional
Uses the algorithm proposed by [3]_, which is faster for small p
References
----------
.. [1] P. Erdos and A. Renyi, On Random Graphs, Publ. Math. 6, 290 (1959).
.. [2] E. N. Gilbert, Random Graphs, Ann. Math. Stat., 30, 1141 (1959).
.. [3] Vladimir Batagelj and Ulrik Brandes,
"Efficient generation of large random networks",
Phys. Rev. E, 71, 036113, 2005.
"""
# validate input parameters
if not isinstance(n, int) or n < 0:
raise ValueError('n must be a positive integer')
if p > 1 or p < 0:
raise ValueError('p must be a value in (0,1)')
if fast:
G = Topology(nx.fast_gnp_random_graph(n, p, seed=seed))
else:
G = Topology(nx.gnp_random_graph(n, p, seed=seed))
G.name = "erdos_renyi_topology(%s, %s)" % (n, p)
G.graph['type'] = 'er'
return G
示例6: glp_topology
# 需要导入模块: from fnss.topologies.topology import Topology [as 别名]
# 或者: from fnss.topologies.topology.Topology import graph['type'] [as 别名]
def glp_topology(n, m, m0, p, beta, seed=None):
r"""
Return a random topology using the Generalized Linear Preference (GLP)
preferential attachment model.
It differs from the extended Barabasi-Albert model in that there is link
rewiring and a beta parameter is introduced to fine-tune preferential
attachment.
More precisely, the GLP topology is built as follows. First, a
line topology with *m0* nodes is created. Then, at each step:
with probability *p*, add *m* new links between existing nodes, selected
with probability:
.. math::
\Pi(i) = \frac{deg(i) - \beta 1}{\sum_{v \in V} (deg(v) - \beta)}
with probability :math:`1-p`, add a new node and attach it to m nodes of
the existing topology selected with probability :math:`\Pi(i)`
Repeat the previous step until the topology comprises n nodes in total.
Parameters
----------
n : int
Number of nodes
m : int
Number of edges to attach from a new node to existing nodes
m0 : int
Number of edges initially attached to the network
p : float
The probability that new links are added
beta : float
Parameter to fine-tune preferntial attachment: beta < 1
seed : int, optional
Seed for random number generator (default=None).
Returns
-------
G : Topology
References
----------
.. [1] T. Bu and D. Towsey "On distinguishing between Internet power law
topology generators", Proceeding od the 21st IEEE INFOCOM conference.
IEEE, volume 2, pages 638-647, 2002.
"""
def calc_pi(G, beta):
"""Calculate GLP Pi function for all nodes of the graph"""
# validate input parameter
if beta >= 1:
raise ValueError('beta must be < 1')
degree = dict(G.degree())
den = float(sum(degree.values()) - (G.number_of_nodes() * beta))
return {node: (degree[node] - beta) / den for node in G.nodes()}
def add_m_links(G, pi):
"""Add m links between existing nodes to the graph"""
n_nodes = G.number_of_nodes()
n_edges = G.number_of_edges()
max_n_edges = (n_nodes * (n_nodes - 1)) / 2
if n_edges + m > max_n_edges: # cannot add m links
add_node(G, pi) # add a new node instead
# return in any case because before doing another operation
# (add node or links) we need to recalculate pi
return
new_links = 0
while new_links < m:
u = random_from_pdf(pi)
v = random_from_pdf(pi)
if u != v and not G.has_edge(u, v):
G.add_edge(u, v)
new_links += 1
def add_node(G, pi):
"""Add one node to the graph and connect it to m existing nodes"""
new_node = G.number_of_nodes()
G.add_node(new_node)
new_links = 0
while new_links < m:
existing_node = random_from_pdf(pi)
if not G.has_edge(new_node, existing_node):
G.add_edge(new_node, existing_node)
new_links += 1
# validate input parameters
if n < 1 or m < 1 or m0 < 1:
raise ValueError('n, m and m0 must be a positive integers')
if beta >= 1:
raise ValueError('beta must be < 1')
if m >= m0:
raise ValueError('m must be <= m0')
if p > 1 or p < 0:
raise ValueError('p must be included between 0 and 1')
if seed is not None:
random.seed(seed)
# step 1: create a graph of m0 nodes connected by n-1 edges
G = Topology(nx.path_graph(m0))
G.graph['type'] = 'glp'
G.name = "glp_topology(%d, %d, %d, %f, %f)" % (n, m, m0, p, beta)
#.........这里部分代码省略.........
示例7: barabasi_albert_topology
# 需要导入模块: from fnss.topologies.topology import Topology [as 别名]
# 或者: from fnss.topologies.topology.Topology import graph['type'] [as 别名]
def barabasi_albert_topology(n, m, m0, seed=None):
r"""
Return a random topology using Barabasi-Albert preferential attachment
model.
A topology of n nodes is grown by attaching new nodes each with m links
that are preferentially attached to existing nodes with high degree.
More precisely, the Barabasi-Albert topology is built as follows. First, a
line topology with m0 nodes is created. Then at each step, one node is
added and connected to m existing nodes. These nodes are selected randomly
with probability
.. math::
\Pi(i) = \frac{deg(i)}{sum_{v \in V} deg V}.
Where i is the selected node and V is the set of nodes of the graph.
Parameters
----------
n : int
Number of nodes
m : int
Number of edges to attach from a new node to existing nodes
m0 : int
Number of nodes initially attached to the network
seed : int, optional
Seed for random number generator (default=None).
Returns
-------
G : Topology
Notes
-----
The initialization is a graph with with m nodes connected by :math:`m -1`
edges.
It does not use the Barabasi-Albert method provided by NetworkX because it
does not allow to specify *m0* parameter.
There are no disconnected subgraphs in the topology.
References
----------
.. [1] A. L. Barabasi and R. Albert "Emergence of scaling in
random networks", Science 286, pp 509-512, 1999.
"""
def calc_pi(G):
"""Calculate BA Pi function for all nodes of the graph"""
degree = dict(G.degree())
den = float(sum(degree.values()))
return {node: degree[node] / den for node in G.nodes()}
# input parameters
if n < 1 or m < 1 or m0 < 1:
raise ValueError('n, m and m0 must be positive integers')
if m >= m0:
raise ValueError('m must be <= m0')
if n < m0:
raise ValueError('n must be > m0')
if seed is not None:
random.seed(seed)
# Step 1: Add m0 nodes. These nodes are interconnected together
# because otherwise they will end up isolated at the end
G = Topology(nx.path_graph(m0))
G.name = "ba_topology(%d,%d,%d)" % (n, m, m0)
G.graph['type'] = 'ba'
# Step 2: Add one node and connect it with m links
while G.number_of_nodes() < n:
pi = calc_pi(G)
u = G.number_of_nodes()
G.add_node(u)
new_links = 0
while new_links < m:
v = random_from_pdf(pi)
if not G.has_edge(u, v):
G.add_edge(u, v)
new_links += 1
return G