当前位置: 首页>>代码示例>>Python>>正文


Python Job.pipeline方法代码示例

本文整理汇总了Python中disco.core.Job.pipeline方法的典型用法代码示例。如果您正苦于以下问题:Python Job.pipeline方法的具体用法?Python Job.pipeline怎么用?Python Job.pipeline使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在disco.core.Job的用法示例。


在下文中一共展示了Job.pipeline方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: measure

# 需要导入模块: from disco.core import Job [as 别名]
# 或者: from disco.core.Job import pipeline [as 别名]
def measure(test_data, predictions, measure="ca", save_results=True, show=False):
    from disco.worker.pipeline.worker import Worker, Stage
    from disco.core import Job, result_iterator
    from disco.worker.task_io import task_input_stream, chain_reader

    if measure not in ["ca", "mse"]:
        raise Exception("measure should be ca or mse.")
    if test_data.params["id_index"] == -1:
        raise Exception("ID index should be defined.")

    if predictions == []:
        return "No predictions", None

    # define a job and set save of results to ddfs
    job = Job(worker=Worker(save_results=save_results))

    job = Job(worker=Worker(save_results=save_results))
    job.pipeline = [
        ("split", Stage("map", input_chain=test_data.params["input_chain"], init=simple_init, process=map_test_data))]

    job.params = test_data.params
    job.run(name="ma_parse_testdata", input=test_data.params["data_tag"])
    parsed_testdata = job.wait(show=show)

    reduce_proces = reduce_ca if measure == "ca" else reduce_mse

    job = Job(worker=Worker(save_results=save_results))
    job.pipeline = [("split", Stage("map", init=simple_init, input_chain=[task_input_stream, chain_reader],
                                    process=map_predictions)),
                    ('group_all', Stage("reduce", init=simple_init, process=reduce_proces, sort=True, combine=True))]

    job.run(name="ma_measure_accuracy", input=parsed_testdata + predictions)

    measure, acc = [(measure, acc) for measure, acc in result_iterator(job.wait(show=show))][0]
    return measure, acc
开发者ID:romanorac,项目名称:discomll,代码行数:37,代码来源:accuracy.py

示例2: predict

# 需要导入模块: from disco.core import Job [as 别名]
# 或者: from disco.core.Job import pipeline [as 别名]
def predict(dataset, fitmodel_url, save_results=True, show=False):
    """
    Function starts a job that makes predictions to input data with a given model.

    Parameters
    ----------
    input - dataset object with input urls and other parameters
    fitmodel_url - model created in fit phase
    save_results - save results to ddfs
    show - show info about job execution

    Returns
    -------
    Urls with predictions on ddfs
    """
    from disco.worker.pipeline.worker import Worker, Stage
    from disco.core import Job, result_iterator

    if "linsvm_fitmodel" not in fitmodel_url:
        raise Exception("Incorrect fit model.")

    job = Job(worker=Worker(save_results=save_results))
    # job parallelizes execution of mappers
    job.pipeline = [
        ("split", Stage("map", input_chain=dataset.params["input_chain"], init=simple_init, process=map_predict))]

    job.params = dataset.params
    job.params["fit_params"] = [v for _, v in result_iterator(fitmodel_url["linsvm_fitmodel"])][0]
    job.run(name="linsvm_predict", input=dataset.params["data_tag"])

    return job.wait(show=show)
开发者ID:romanorac,项目名称:discomll,代码行数:33,代码来源:linear_svm.py

示例3: fit

# 需要导入模块: from disco.core import Job [as 别名]
# 或者: from disco.core.Job import pipeline [as 别名]
def fit(dataset, save_results=True, show=False):
    """
    Function builds a model for Naive Bayes. It executes multiple map functions and one reduce function which aggregates intermediate results and returns a model.

    Parameters
    ----------
    input - dataset object with input urls and other parameters
    save_results - save results to ddfs
    show - show info about job execution

    Returns
    -------
    Urls of fit model results on ddfs
    """
    from disco.worker.pipeline.worker import Worker, Stage
    from disco.core import Job

    # define a job and set save of results to ddfs
    job = Job(worker=Worker(save_results=save_results))

    # job parallelizes mappers, sorts intermediate pairs and joins them with one reducer
    job.pipeline = [
        ("split", Stage("map", input_chain=dataset.params["input_chain"], init=simple_init, process=map_fit)),
        ('group_all', Stage("reduce", init=simple_init, process=reduce_fit, sort=True, combine=True))]

    job.params = dataset.params  # job parameters (dataset object)
    # define name of a job and input data urls
    job.run(name="naivebayes_fit", input=dataset.params["data_tag"])
    fitmodel_url = job.wait(show=show)
    return {"naivebayes_fitmodel": fitmodel_url}  # return results url
开发者ID:romanorac,项目名称:discomll,代码行数:32,代码来源:naivebayes.py

示例4: predict

# 需要导入模块: from disco.core import Job [as 别名]
# 或者: from disco.core.Job import pipeline [as 别名]
def predict(dataset, fitmodel_url, voting=False, save_results=True, show=False):
    from disco.worker.pipeline.worker import Worker, Stage
    from disco.core import Job, result_iterator
    import discomll

    path = "/".join(discomll.__file__.split("/")[:-1] + ["ensemble", "core", ""])

    if "drf_fitmodel" not in fitmodel_url:
        raise Exception("Incorrect fit model.")

    job = Job(worker=Worker(save_results=save_results))
    job.pipeline = [("split", Stage("map", input_chain=dataset.params["input_chain"], init=simple_init,
                                    process=map_predict_voting if voting else map_predict_dist))]

    job.params = dataset.params
    for k, v in result_iterator(fitmodel_url["drf_fitmodel"]):
        job.params[k] = v

    if len(job.params["forest"]) == 0:
        print "Warning: There is no decision trees in forest"
        return []

    job.run(name="distributed_random_forest_predict", input=dataset.params["data_tag"],
            required_files=[path + "decision_tree.py"])

    return job.wait(show=show)
开发者ID:romanorac,项目名称:discomll,代码行数:28,代码来源:distributed_random_forest.py

示例5: predict

# 需要导入模块: from disco.core import Job [as 别名]
# 或者: from disco.core.Job import pipeline [as 别名]
def predict(dataset, fitmodel_url, coeff=0.5, save_results=True, show=False):
    from disco.worker.pipeline.worker import Worker, Stage
    from disco.core import Job, result_iterator
    import discomll
    path = "/".join(discomll.__file__.split("/")[:-1] + ["ensemble", "core", ""])

    job = Job(worker=Worker(save_results=save_results))
    job.pipeline = [
        ("split", Stage("map", input_chain=dataset.params["input_chain"], init=simple_init, process=map_predict))]

    if "dwfr_fitmodel" not in fitmodel_url:
        raise Exception("Incorrect fit model.")
    try:
        coeff = float(coeff)
        if coeff < 0:
            raise Exception("Parameter coeff should be greater than 0.")
    except ValueError:
        raise Exception("Parameter coeff should be numerical.")

    job.params = dataset.params
    job.params["coeff"] = coeff
    for k, v in result_iterator(fitmodel_url["dwfr_fitmodel"]):
        job.params[k] = v

    if len(job.params["forest"]) == 0:
        print "Warning: There is no decision trees in forest"
        return []

    job.run(name="distributed_weighted_forest_rand_predict", input=dataset.params["data_tag"],
            required_files=[path + "decision_tree.py"])

    return job.wait(show=show)
开发者ID:romanorac,项目名称:discomll,代码行数:34,代码来源:distributed_weighted_forest_rand.py

示例6: fit_predict

# 需要导入模块: from disco.core import Job [as 别名]
# 或者: from disco.core.Job import pipeline [as 别名]
def fit_predict(training_data, fitting_data, tau=1, samples_per_job=0, save_results=True, show=False):
    from disco.worker.pipeline.worker import Worker, Stage
    from disco.core import Job, result_iterator
    from disco.core import Disco

    """
    training_data - training samples
    fitting_data - dataset to be fitted to training data.
    tau - controls how quickly the weight of a training sample falls off with distance of its x(i) from the query point x.
    samples_per_job - define a number of samples that will be processed in single mapreduce job. If 0, algorithm will calculate number of samples per job.
    """

    try:
        tau = float(tau)
        if tau <= 0:
            raise Exception("Parameter tau should be >= 0.")
    except ValueError:
        raise Exception("Parameter tau should be numerical.")

    if fitting_data.params["id_index"] == -1:
        raise Exception("Predict data should have id_index set.")

    job = Job(worker=Worker(save_results=save_results))
    job.pipeline = [
        ("split", Stage("map", input_chain=fitting_data.params["input_chain"], init=simple_init, process=map_predict))
    ]
    job.params = fitting_data.params
    job.run(name="lwlr_read_data", input=fitting_data.params["data_tag"])

    samples = {}
    results = []
    tau = float(2 * tau ** 2)  # calculate tau once
    counter = 0

    for test_id, x in result_iterator(job.wait(show=show)):
        if samples_per_job == 0:
            # calculate number of samples per job
            if len(x) <= 100:  # if there is less than 100 attributes
                samples_per_job = 100  # 100 samples is max per on job
            else:
                # there is more than 100 attributes
                samples_per_job = len(x) * -25 / 900.0 + 53  # linear function

        samples[test_id] = x
        if counter == samples_per_job:
            results.append(_fit_predict(training_data, samples, tau, save_results, show))
            counter = 0
            samples = {}
        counter += 1

    if len(samples) > 0:  # if there is some samples left in the the dictionary
        results.append(_fit_predict(training_data, samples, tau, save_results, show))

    # merge results of every iteration into a single tag
    ddfs = Disco().ddfs
    ddfs.tag(job.name, [[list(ddfs.blobs(tag))[0][0]] for tag in results])

    return ["tag://" + job.name]
开发者ID:romanorac,项目名称:discomll,代码行数:60,代码来源:locally_weighted_linear_regression.py

示例7: predict

# 需要导入模块: from disco.core import Job [as 别名]
# 或者: from disco.core.Job import pipeline [as 别名]
def predict(dataset, fitmodel_url, m=1, save_results=True, show=False):
    """
    Function starts a job that makes predictions to input data with a given model

    Parameters
    ----------
    input - dataset object with input urls and other parameters
    fitmodel_url - model created in fit phase
    m - m estimate is used with discrete features
    save_results - save results to ddfs
    show - show info about job execution

    Returns
    -------
    Urls of predictions on ddfs
    """
    from disco.worker.pipeline.worker import Worker, Stage
    from disco.core import Job, result_iterator
    import numpy as np

    try:
        m = float(m)
    except ValueError:
        raise Exception("Parameter m should be numerical.")

    if "naivebayes_fitmodel" in fitmodel_url:
        # fit model is loaded from ddfs
        fit_model = dict((k, v) for k, v in result_iterator(fitmodel_url["naivebayes_fitmodel"]))
        if len(fit_model["y_labels"]) < 2:
            print "There is only one class in training data."
            return []
    else:
        raise Exception("Incorrect fit model.")

    if dataset.params["X_meta"].count("d") > 0:  # if there are discrete features in the model
        # code calculates logarithms to optimize predict phase as opposed to calculation by every mapped.
        np.seterr(divide='ignore')
        for iv in fit_model["iv"]:
            dist = [fit_model.pop((y,) + iv, 0) for y in fit_model["y_labels"]]
            fit_model[iv] = np.nan_to_num(
                np.log(np.true_divide(np.array(dist) + m * fit_model["prior"], np.sum(dist) + m))) - fit_model[
                                "prior_log"]
        del (fit_model["iv"])

    # define a job and set save of results to ddfs
    job = Job(worker=Worker(save_results=save_results))

    # job parallelizes execution of mappers
    job.pipeline = [
        ("split", Stage("map", input_chain=dataset.params["input_chain"], init=simple_init, process=map_predict))]

    job.params = dataset.params  # job parameters (dataset object)
    job.params["fit_model"] = fit_model
    # define name of a job and input data urls
    job.run(name="naivebayes_predict", input=dataset.params["data_tag"])
    results = job.wait(show=show)
    return results
开发者ID:romanorac,项目名称:discomll,代码行数:59,代码来源:naivebayes.py

示例8: fit

# 需要导入模块: from disco.core import Job [as 别名]
# 或者: from disco.core.Job import pipeline [as 别名]
def fit(dataset, alpha=1e-8, max_iterations=10, save_results=True, show=False):
    """
    Function starts a job for calculation of theta parameters

    Parameters
    ----------
    input - dataset object with input urls and other parameters
    alpha - convergence value
    max_iterations - define maximum number of iterations
    save_results - save results to ddfs
    show - show info about job execution

    Returns
    -------
    Urls of fit model results on ddfs
    """
    from disco.worker.pipeline.worker import Worker, Stage
    from disco.core import Job, result_iterator
    import numpy as np

    if dataset.params["y_map"] == []:
        raise Exception("Logistic regression requires a target label mapping parameter.")
    try:
        alpha = float(alpha)
        max_iterations = int(max_iterations)
        if max_iterations < 1:
            raise Exception("Parameter max_iterations should be greater than 0.")
    except ValueError:
        raise Exception("Parameters should be numerical.")

    # initialize thetas to 0 and add intercept term
    thetas = np.zeros(len(dataset.params["X_indices"]) + 1)

    J = [0]  # J cost function values for every iteration
    for i in range(max_iterations):
        job = Job(worker=Worker(save_results=save_results))
        # job parallelizes mappers and joins them with one reducer
        job.pipeline = [
            ("split", Stage("map", input_chain=dataset.params["input_chain"], init=simple_init, process=map_fit)),
            ('group_all', Stage("reduce", init=simple_init, process=reduce_fit, combine=True))]

        job.params = dataset.params  # job parameters (dataset object)
        job.params["thetas"] = thetas  # every iteration set new thetas
        job.run(name="logreg_fit_iter_%d" % (i + 1), input=dataset.params["data_tag"])

        fitmodel_url = job.wait(show=show)
        for k, v in result_iterator(fitmodel_url):
            if k == "J":  #
                J.append(v)  # save value of J cost function
            else:
                thetas = v  # save new thetas
        if np.abs(J[-2] - J[-1]) < alpha:  # check for convergence
            if show:
                print("Converged at iteration %d" % (i + 1))
            break

    return {"logreg_fitmodel": fitmodel_url}  # return results url
开发者ID:romanorac,项目名称:discomll,代码行数:59,代码来源:logistic_regression.py

示例9: fit

# 需要导入模块: from disco.core import Job [as 别名]
# 或者: from disco.core.Job import pipeline [as 别名]
def fit(dataset, save_results=True, show=False):
    from disco.worker.pipeline.worker import Worker, Stage
    from disco.core import Job
    job = Job(worker=Worker(save_results=save_results))

    job.pipeline = [
        ("split", Stage("map", input_chain=dataset.params["input_chain"], init=simple_init, process=map_fit)),
        ('group_all', Stage("reduce", init=simple_init, process=reduce_fit, combine=True))]

    job.params = dataset.params
    job.run(name="linreg_fit", input=dataset.params["data_tag"])

    fitmodel_url = job.wait(show=show)
    return {"linreg_fitmodel": fitmodel_url}  # return results url
开发者ID:romanorac,项目名称:discomll,代码行数:16,代码来源:linear_regression.py

示例10: fit

# 需要导入模块: from disco.core import Job [as 别名]
# 或者: from disco.core.Job import pipeline [as 别名]
def fit(dataset, trees_per_chunk=1, bootstrap=True, max_tree_nodes=50, min_samples_leaf=10, min_samples_split=5,
        class_majority=1, separate_max=True, measure="info_gain", accuracy=1, random_state=None, save_results=True,
        show=False):
    from disco.worker.pipeline.worker import Worker, Stage
    from disco.core import Job
    import discomll
    path = "/".join(discomll.__file__.split("/")[:-1] + ["ensemble", "core", ""])

    try:
        trees_per_chunk = int(trees_per_chunk)
        max_tree_nodes = int(max_tree_nodes) if max_tree_nodes != None else max_tree_nodes
        min_samples_leaf = int(min_samples_leaf)
        min_samples_split = int(min_samples_split)
        class_majority = float(class_majority)
        accuracy = int(accuracy)
        separate_max = separate_max
        if trees_per_chunk > 1 and bootstrap == False:
            raise Exception("Parameter trees_per_chunk (or Trees per subset) should be 1 to disable bootstrap.")
        if trees_per_chunk <= 0 or min_samples_leaf <= 0 or class_majority <= 0 or min_samples_split <= 0 and accuracy < 0 or type(
                bootstrap) != bool:
            raise Exception("Parameters should be greater than 0.")
    except ValueError:
        raise Exception("Parameters should be numerical.")

    if measure not in ["info_gain", "mdl"]:
        raise Exception("measure should be set to info_gain or mdl.")

    job = Job(worker=Worker(save_results=save_results))
    job.pipeline = [
        ("split", Stage("map", input_chain=dataset.params["input_chain"], init=map_init,
                        process=map_fit_bootstrap if bootstrap else map_fit)),
        ('group_all', Stage("reduce", init=simple_init, process=reduce_fit, combine=True))]

    job.params = dataset.params
    job.params["trees_per_chunk"] = trees_per_chunk
    job.params["max_tree_nodes"] = max_tree_nodes
    job.params["min_samples_leaf"] = min_samples_leaf
    job.params["min_samples_split"] = min_samples_split
    job.params["class_majority"] = class_majority
    job.params["measure"] = measure
    job.params["bootstrap"] = bootstrap
    job.params["accuracy"] = accuracy
    job.params["separate_max"] = separate_max
    job.params['seed'] = random_state

    job.run(name="forest_distributed_decision_trees_fit", input=dataset.params["data_tag"],
            required_files=[path + "decision_tree.py", path + "measures.py"])

    fitmodel_url = job.wait(show=show)
    return {"fddt_fitmodel": fitmodel_url}  # return results url
开发者ID:romanorac,项目名称:discomll,代码行数:52,代码来源:forest_distributed_decision_trees.py

示例11: predict

# 需要导入模块: from disco.core import Job [as 别名]
# 或者: from disco.core.Job import pipeline [as 别名]
def predict(dataset, fitmodel_url, save_results=True, show=False):
    from disco.worker.pipeline.worker import Worker, Stage
    from disco.core import Job, result_iterator

    if "linreg_fitmodel" not in fitmodel_url:
        raise Exception("Incorrect fit model.")

    job = Job(worker=Worker(save_results=save_results))
    job.pipeline = [
        ("split", Stage("map", input_chain=dataset.params["input_chain"], init=simple_init, process=map_predict))]
    job.params = dataset.params
    job.params["thetas"] = [v for _, v in result_iterator(fitmodel_url["linreg_fitmodel"])][0]

    job.run(name="linreg_predict", input=dataset.params["data_tag"])
    return job.wait(show=show)
开发者ID:romanorac,项目名称:discomll,代码行数:17,代码来源:linear_regression.py

示例12: measure

# 需要导入模块: from disco.core import Job [as 别名]
# 或者: from disco.core.Job import pipeline [as 别名]
def measure(input, save_results=True, show=False):
    from disco.worker.pipeline.worker import Worker, Stage
    from disco.core import Job

    # define a job and set save of results to ddfs
    job = Job(worker=Worker(save_results=save_results))

    job.pipeline = [
        ("split", Stage("map", input_chain=input.params["input_chain"], init=simple_init, process=map_fit)),
        ('group_all', Stage("reduce", init=simple_init, process=reduce_fit, combine=True))]

    job.params = input.params  # job parameters (dataset object)

    job.run(name="Distribution", input=input.params["data_tag"])
    return job.wait(show=show)  # return results url
开发者ID:romanorac,项目名称:discomll,代码行数:17,代码来源:distribution.py

示例13: _fit_predict

# 需要导入模块: from disco.core import Job [as 别名]
# 或者: from disco.core.Job import pipeline [as 别名]
def _fit_predict(fit_data, samples, tau, save_results, show):
    from disco.worker.pipeline.worker import Worker, Stage
    from disco.core import Job

    job = Job(worker=Worker(save_results=save_results))

    job.pipeline = [
        ("split", Stage("map", input_chain=fit_data.params["input_chain"], init=simple_init, process=map_fit)),
        ("group_all", Stage("reduce", init=simple_init, process=reduce_fit, sort=True, combine=True)),
    ]

    job.params = fit_data.params
    job.params["tau"] = tau
    job.params["samples"] = samples

    job.run(name="lwlr_fit_predict", input=fit_data.params["data_tag"])
    return job.wait(show=show)
开发者ID:romanorac,项目名称:discomll,代码行数:19,代码来源:locally_weighted_linear_regression.py

示例14: fit

# 需要导入模块: from disco.core import Job [as 别名]
# 或者: from disco.core.Job import pipeline [as 别名]
def fit(dataset, nu=0.1, save_results=True, show=False):
    """
    Function starts a job for calculation of model parameters

    Parameters
    ----------
    input - dataset object with input urls and other parameters
    nu - parameter to adjust the classifier
    save_results - save results to ddfs
    show - show info about job execution

    Returns
    -------
    Urls of fit model results on ddfs
    """
    from disco.worker.pipeline.worker import Worker, Stage
    from disco.core import Job

    if dataset.params["y_map"] == []:
        raise Exception("Linear proximal SVM requires a target label mapping parameter.")
    try:
        nu = float(nu)
        if nu <= 0:
            raise Exception("Parameter nu should be greater than 0")
    except ValueError:
        raise Exception("Parameter should be numerical.")

    job = Job(worker=Worker(save_results=save_results))

    # job parallelizes mappers and joins them with one reducer
    job.pipeline = [
        ("split", Stage("map", input_chain=dataset.params["input_chain"], init=simple_init, process=map_fit)),
        ('group_all', Stage("reduce", init=simple_init, process=reduce_fit, combine=True))]

    job.params = dataset.params
    job.params["nu"] = nu
    job.run(name="linearsvm_fit", input=dataset.params["data_tag"])
    fitmodel_url = job.wait(show=show)
    return {"linsvm_fitmodel": fitmodel_url}  # return results url
开发者ID:romanorac,项目名称:discomll,代码行数:41,代码来源:linear_svm.py

示例15: fit

# 需要导入模块: from disco.core import Job [as 别名]
# 或者: from disco.core.Job import pipeline [as 别名]
def fit(
    dataset,
    trees_per_chunk=3,
    max_tree_nodes=50,
    min_samples_leaf=10,
    min_samples_split=5,
    class_majority=1,
    measure="info_gain",
    k="sqrt",
    accuracy=1,
    random_state=None,
    separate_max=True,
    save_results=True,
    show=False,
):
    from disco.worker.pipeline.worker import Worker, Stage
    from disco.core import Job
    import discomll

    path = "/".join(discomll.__file__.split("/")[:-1] + ["ensemble", "core", ""])

    try:
        trees_per_chunk = int(trees_per_chunk)
        max_tree_nodes = int(max_tree_nodes) if max_tree_nodes != None else max_tree_nodes
        min_samples_leaf = int(min_samples_leaf)
        min_samples_split = int(min_samples_split)
        class_majority = float(class_majority)
        separate_max = separate_max
        accuracy = int(accuracy)

        if (
            trees_per_chunk <= 0
            or min_samples_leaf <= 0
            or min_samples_split <= 0
            or class_majority <= 0
            or accuracy < 0
        ):
            raise Exception("Parameters should be greater than 0.")
    except ValueError:
        raise Exception("Parameters should be numerical.")

    if measure not in ["info_gain", "mdl"]:
        raise Exception("measure should be set to info_gain or mdl.")

    job = Job(worker=Worker(save_results=save_results))
    job.pipeline = [
        ("split", Stage("map", input_chain=dataset.params["input_chain"], init=map_init, process=map_fit)),
        ("group_all", Stage("reduce", init=simple_init, process=reduce_fit, combine=True)),
    ]

    job.params = dataset.params
    job.params["trees_per_chunk"] = trees_per_chunk
    job.params["max_tree_nodes"] = max_tree_nodes
    job.params["min_samples_leaf"] = min_samples_leaf
    job.params["min_samples_split"] = min_samples_split
    job.params["class_majority"] = class_majority
    job.params["measure"] = measure
    job.params["accuracy"] = accuracy
    job.params["k"] = k
    job.params["seed"] = random_state
    job.params["separate_max"] = separate_max

    job.run(
        name="distributed_weighted_forest_fit",
        input=dataset.params["data_tag"],
        required_files=[path + "decision_tree.py", path + "measures.py", path + "k_medoids.py"],
    )

    fitmodel_url = job.wait(show=show)
    return {"dwf_fitmodel": fitmodel_url}  # return results url
开发者ID:romanorac,项目名称:discomll,代码行数:72,代码来源:distributed_weighted_forest.py


注:本文中的disco.core.Job.pipeline方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。