当前位置: 首页>>代码示例>>Python>>正文


Python Job.params["fit_model"]方法代码示例

本文整理汇总了Python中disco.core.Job.params["fit_model"]方法的典型用法代码示例。如果您正苦于以下问题:Python Job.params["fit_model"]方法的具体用法?Python Job.params["fit_model"]怎么用?Python Job.params["fit_model"]使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在disco.core.Job的用法示例。


在下文中一共展示了Job.params["fit_model"]方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: predict

# 需要导入模块: from disco.core import Job [as 别名]
# 或者: from disco.core.Job import params["fit_model"] [as 别名]
def predict(dataset, fitmodel_url, m=1, save_results=True, show=False):
    """
    Function starts a job that makes predictions to input data with a given model

    Parameters
    ----------
    input - dataset object with input urls and other parameters
    fitmodel_url - model created in fit phase
    m - m estimate is used with discrete features
    save_results - save results to ddfs
    show - show info about job execution

    Returns
    -------
    Urls of predictions on ddfs
    """
    from disco.worker.pipeline.worker import Worker, Stage
    from disco.core import Job, result_iterator
    import numpy as np

    try:
        m = float(m)
    except ValueError:
        raise Exception("Parameter m should be numerical.")

    if "naivebayes_fitmodel" in fitmodel_url:
        # fit model is loaded from ddfs
        fit_model = dict((k, v) for k, v in result_iterator(fitmodel_url["naivebayes_fitmodel"]))
        if len(fit_model["y_labels"]) < 2:
            print "There is only one class in training data."
            return []
    else:
        raise Exception("Incorrect fit model.")

    if dataset.params["X_meta"].count("d") > 0:  # if there are discrete features in the model
        # code calculates logarithms to optimize predict phase as opposed to calculation by every mapped.
        np.seterr(divide='ignore')
        for iv in fit_model["iv"]:
            dist = [fit_model.pop((y,) + iv, 0) for y in fit_model["y_labels"]]
            fit_model[iv] = np.nan_to_num(
                np.log(np.true_divide(np.array(dist) + m * fit_model["prior"], np.sum(dist) + m))) - fit_model[
                                "prior_log"]
        del (fit_model["iv"])

    # define a job and set save of results to ddfs
    job = Job(worker=Worker(save_results=save_results))

    # job parallelizes execution of mappers
    job.pipeline = [
        ("split", Stage("map", input_chain=dataset.params["input_chain"], init=simple_init, process=map_predict))]

    job.params = dataset.params  # job parameters (dataset object)
    job.params["fit_model"] = fit_model
    # define name of a job and input data urls
    job.run(name="naivebayes_predict", input=dataset.params["data_tag"])
    results = job.wait(show=show)
    return results
开发者ID:romanorac,项目名称:discomll,代码行数:59,代码来源:naivebayes.py


注:本文中的disco.core.Job.params["fit_model"]方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。