当前位置: 首页>>代码示例>>Python>>正文


Python Job.params["nu"]方法代码示例

本文整理汇总了Python中disco.core.Job.params["nu"]方法的典型用法代码示例。如果您正苦于以下问题:Python Job.params["nu"]方法的具体用法?Python Job.params["nu"]怎么用?Python Job.params["nu"]使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在disco.core.Job的用法示例。


在下文中一共展示了Job.params["nu"]方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: fit

# 需要导入模块: from disco.core import Job [as 别名]
# 或者: from disco.core.Job import params["nu"] [as 别名]
def fit(dataset, nu=0.1, save_results=True, show=False):
    """
    Function starts a job for calculation of model parameters

    Parameters
    ----------
    input - dataset object with input urls and other parameters
    nu - parameter to adjust the classifier
    save_results - save results to ddfs
    show - show info about job execution

    Returns
    -------
    Urls of fit model results on ddfs
    """
    from disco.worker.pipeline.worker import Worker, Stage
    from disco.core import Job

    if dataset.params["y_map"] == []:
        raise Exception("Linear proximal SVM requires a target label mapping parameter.")
    try:
        nu = float(nu)
        if nu <= 0:
            raise Exception("Parameter nu should be greater than 0")
    except ValueError:
        raise Exception("Parameter should be numerical.")

    job = Job(worker=Worker(save_results=save_results))

    # job parallelizes mappers and joins them with one reducer
    job.pipeline = [
        ("split", Stage("map", input_chain=dataset.params["input_chain"], init=simple_init, process=map_fit)),
        ('group_all', Stage("reduce", init=simple_init, process=reduce_fit, combine=True))]

    job.params = dataset.params
    job.params["nu"] = nu
    job.run(name="linearsvm_fit", input=dataset.params["data_tag"])
    fitmodel_url = job.wait(show=show)
    return {"linsvm_fitmodel": fitmodel_url}  # return results url
开发者ID:romanorac,项目名称:discomll,代码行数:41,代码来源:linear_svm.py


注:本文中的disco.core.Job.params["nu"]方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。