当前位置: 首页>>代码示例>>Python>>正文


Python Job.params["measure"]方法代码示例

本文整理汇总了Python中disco.core.Job.params["measure"]方法的典型用法代码示例。如果您正苦于以下问题:Python Job.params["measure"]方法的具体用法?Python Job.params["measure"]怎么用?Python Job.params["measure"]使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在disco.core.Job的用法示例。


在下文中一共展示了Job.params["measure"]方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: fit

# 需要导入模块: from disco.core import Job [as 别名]
# 或者: from disco.core.Job import params["measure"] [as 别名]
def fit(dataset, trees_per_chunk=1, bootstrap=True, max_tree_nodes=50, min_samples_leaf=10, min_samples_split=5,
        class_majority=1, separate_max=True, measure="info_gain", accuracy=1, random_state=None, save_results=True,
        show=False):
    from disco.worker.pipeline.worker import Worker, Stage
    from disco.core import Job
    import discomll
    path = "/".join(discomll.__file__.split("/")[:-1] + ["ensemble", "core", ""])

    try:
        trees_per_chunk = int(trees_per_chunk)
        max_tree_nodes = int(max_tree_nodes) if max_tree_nodes != None else max_tree_nodes
        min_samples_leaf = int(min_samples_leaf)
        min_samples_split = int(min_samples_split)
        class_majority = float(class_majority)
        accuracy = int(accuracy)
        separate_max = separate_max
        if trees_per_chunk > 1 and bootstrap == False:
            raise Exception("Parameter trees_per_chunk (or Trees per subset) should be 1 to disable bootstrap.")
        if trees_per_chunk <= 0 or min_samples_leaf <= 0 or class_majority <= 0 or min_samples_split <= 0 and accuracy < 0 or type(
                bootstrap) != bool:
            raise Exception("Parameters should be greater than 0.")
    except ValueError:
        raise Exception("Parameters should be numerical.")

    if measure not in ["info_gain", "mdl"]:
        raise Exception("measure should be set to info_gain or mdl.")

    job = Job(worker=Worker(save_results=save_results))
    job.pipeline = [
        ("split", Stage("map", input_chain=dataset.params["input_chain"], init=map_init,
                        process=map_fit_bootstrap if bootstrap else map_fit)),
        ('group_all', Stage("reduce", init=simple_init, process=reduce_fit, combine=True))]

    job.params = dataset.params
    job.params["trees_per_chunk"] = trees_per_chunk
    job.params["max_tree_nodes"] = max_tree_nodes
    job.params["min_samples_leaf"] = min_samples_leaf
    job.params["min_samples_split"] = min_samples_split
    job.params["class_majority"] = class_majority
    job.params["measure"] = measure
    job.params["bootstrap"] = bootstrap
    job.params["accuracy"] = accuracy
    job.params["separate_max"] = separate_max
    job.params['seed'] = random_state

    job.run(name="forest_distributed_decision_trees_fit", input=dataset.params["data_tag"],
            required_files=[path + "decision_tree.py", path + "measures.py"])

    fitmodel_url = job.wait(show=show)
    return {"fddt_fitmodel": fitmodel_url}  # return results url
开发者ID:romanorac,项目名称:discomll,代码行数:52,代码来源:forest_distributed_decision_trees.py

示例2: fit

# 需要导入模块: from disco.core import Job [as 别名]
# 或者: from disco.core.Job import params["measure"] [as 别名]
def fit(
    dataset,
    trees_per_chunk=3,
    max_tree_nodes=50,
    min_samples_leaf=10,
    min_samples_split=5,
    class_majority=1,
    measure="info_gain",
    k="sqrt",
    accuracy=1,
    random_state=None,
    separate_max=True,
    save_results=True,
    show=False,
):
    from disco.worker.pipeline.worker import Worker, Stage
    from disco.core import Job
    import discomll

    path = "/".join(discomll.__file__.split("/")[:-1] + ["ensemble", "core", ""])

    try:
        trees_per_chunk = int(trees_per_chunk)
        max_tree_nodes = int(max_tree_nodes) if max_tree_nodes != None else max_tree_nodes
        min_samples_leaf = int(min_samples_leaf)
        min_samples_split = int(min_samples_split)
        class_majority = float(class_majority)
        separate_max = separate_max
        accuracy = int(accuracy)

        if (
            trees_per_chunk <= 0
            or min_samples_leaf <= 0
            or min_samples_split <= 0
            or class_majority <= 0
            or accuracy < 0
        ):
            raise Exception("Parameters should be greater than 0.")
    except ValueError:
        raise Exception("Parameters should be numerical.")

    if measure not in ["info_gain", "mdl"]:
        raise Exception("measure should be set to info_gain or mdl.")

    job = Job(worker=Worker(save_results=save_results))
    job.pipeline = [
        ("split", Stage("map", input_chain=dataset.params["input_chain"], init=map_init, process=map_fit)),
        ("group_all", Stage("reduce", init=simple_init, process=reduce_fit, combine=True)),
    ]

    job.params = dataset.params
    job.params["trees_per_chunk"] = trees_per_chunk
    job.params["max_tree_nodes"] = max_tree_nodes
    job.params["min_samples_leaf"] = min_samples_leaf
    job.params["min_samples_split"] = min_samples_split
    job.params["class_majority"] = class_majority
    job.params["measure"] = measure
    job.params["accuracy"] = accuracy
    job.params["k"] = k
    job.params["seed"] = random_state
    job.params["separate_max"] = separate_max

    job.run(
        name="distributed_weighted_forest_fit",
        input=dataset.params["data_tag"],
        required_files=[path + "decision_tree.py", path + "measures.py", path + "k_medoids.py"],
    )

    fitmodel_url = job.wait(show=show)
    return {"dwf_fitmodel": fitmodel_url}  # return results url
开发者ID:romanorac,项目名称:discomll,代码行数:72,代码来源:distributed_weighted_forest.py


注:本文中的disco.core.Job.params["measure"]方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。