当前位置: 首页>>代码示例>>Python>>正文


Python Fields.summary_csv方法代码示例

本文整理汇总了Python中bigml.fields.Fields.summary_csv方法的典型用法代码示例。如果您正苦于以下问题:Python Fields.summary_csv方法的具体用法?Python Fields.summary_csv怎么用?Python Fields.summary_csv使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在bigml.fields.Fields的用法示例。


在下文中一共展示了Fields.summary_csv方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: compute_output

# 需要导入模块: from bigml.fields import Fields [as 别名]
# 或者: from bigml.fields.Fields import summary_csv [as 别名]
def compute_output(api, args):
    """ Creates one or more models using the `training_set` or uses the ids
    of previously created BigML models to make predictions for the `test_set`.

    """
    source = None
    dataset = None
    model = None
    models = None
    fields = None
    other_label = OTHER
    ensemble_ids = []
    multi_label_data = None
    multi_label_fields = []
    #local_ensemble = None
    test_dataset = None
    datasets = None

    # variables from command-line options
    resume = args.resume_
    model_ids = args.model_ids_
    output = args.output
    dataset_fields = args.dataset_fields_

    check_args_coherence(args)
    path = u.check_dir(output)
    session_file = "%s%s%s" % (path, os.sep, SESSIONS_LOG)
    csv_properties = {}
    # If logging is required set the file for logging
    log = None
    if args.log_file:
        u.check_dir(args.log_file)
        log = args.log_file
        # If --clear_logs the log files are cleared
        clear_log_files([log])

    # labels to be used in multi-label expansion
    labels = (None if args.labels is None else
              [label.strip() for label in
               args.labels.split(args.args_separator)])
    if labels is not None:
        labels = sorted([label for label in labels])

    # multi_label file must be preprocessed to obtain a new extended file
    if args.multi_label and args.training_set is not None:
        (args.training_set, multi_label_data) = ps.multi_label_expansion(
            args.training_set, args.train_header, args, path,
            labels=labels, session_file=session_file)
        args.train_header = True
        args.objective_field = multi_label_data["objective_name"]
        all_labels = l.get_all_labels(multi_label_data)
        if not labels:
            labels = all_labels
    else:
        all_labels = labels
    if args.objective_field:
        csv_properties.update({'objective_field': args.objective_field})
    if args.source_file:
        # source is retrieved from the contents of the given local JSON file
        source, csv_properties, fields = u.read_local_resource(
            args.source_file,
            csv_properties=csv_properties)
    else:
        # source is retrieved from the remote object
        source, resume, csv_properties, fields = ps.source_processing(
            api, args, resume,
            csv_properties=csv_properties, multi_label_data=multi_label_data,
            session_file=session_file, path=path, log=log)
    if source is not None:
        args.source = bigml.api.get_source_id(source)
    if args.multi_label and source:
        multi_label_data = l.get_multi_label_data(source)
        (args.objective_field,
         labels,
         all_labels,
         multi_label_fields) = l.multi_label_sync(args.objective_field,
                                                  labels,
                                                  multi_label_data,
                                                  fields,
                                                  multi_label_fields)
    if fields and args.export_fields:
        fields.summary_csv(os.path.join(path, args.export_fields))
    if args.dataset_file:
        # dataset is retrieved from the contents of the given local JSON file
        model_dataset, csv_properties, fields = u.read_local_resource(
            args.dataset_file,
            csv_properties=csv_properties)
        if not args.datasets:
            datasets = [model_dataset]
            dataset = model_dataset
        else:
            datasets = u.read_datasets(args.datasets)
    if not datasets:
        # dataset is retrieved from the remote object
        datasets, resume, csv_properties, fields = pd.dataset_processing(
            source, api, args, resume,
            fields=fields,
            csv_properties=csv_properties,
            multi_label_data=multi_label_data,
            session_file=session_file, path=path, log=log)
#.........这里部分代码省略.........
开发者ID:shantanusharma,项目名称:bigmler,代码行数:103,代码来源:dispatcher.py


注:本文中的bigml.fields.Fields.summary_csv方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。