本文整理汇总了Python中bigml.fields.Fields.summary_csv方法的典型用法代码示例。如果您正苦于以下问题:Python Fields.summary_csv方法的具体用法?Python Fields.summary_csv怎么用?Python Fields.summary_csv使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类bigml.fields.Fields
的用法示例。
在下文中一共展示了Fields.summary_csv方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: compute_output
# 需要导入模块: from bigml.fields import Fields [as 别名]
# 或者: from bigml.fields.Fields import summary_csv [as 别名]
def compute_output(api, args):
""" Creates one or more models using the `training_set` or uses the ids
of previously created BigML models to make predictions for the `test_set`.
"""
source = None
dataset = None
model = None
models = None
fields = None
other_label = OTHER
ensemble_ids = []
multi_label_data = None
multi_label_fields = []
#local_ensemble = None
test_dataset = None
datasets = None
# variables from command-line options
resume = args.resume_
model_ids = args.model_ids_
output = args.output
dataset_fields = args.dataset_fields_
check_args_coherence(args)
path = u.check_dir(output)
session_file = "%s%s%s" % (path, os.sep, SESSIONS_LOG)
csv_properties = {}
# If logging is required set the file for logging
log = None
if args.log_file:
u.check_dir(args.log_file)
log = args.log_file
# If --clear_logs the log files are cleared
clear_log_files([log])
# labels to be used in multi-label expansion
labels = (None if args.labels is None else
[label.strip() for label in
args.labels.split(args.args_separator)])
if labels is not None:
labels = sorted([label for label in labels])
# multi_label file must be preprocessed to obtain a new extended file
if args.multi_label and args.training_set is not None:
(args.training_set, multi_label_data) = ps.multi_label_expansion(
args.training_set, args.train_header, args, path,
labels=labels, session_file=session_file)
args.train_header = True
args.objective_field = multi_label_data["objective_name"]
all_labels = l.get_all_labels(multi_label_data)
if not labels:
labels = all_labels
else:
all_labels = labels
if args.objective_field:
csv_properties.update({'objective_field': args.objective_field})
if args.source_file:
# source is retrieved from the contents of the given local JSON file
source, csv_properties, fields = u.read_local_resource(
args.source_file,
csv_properties=csv_properties)
else:
# source is retrieved from the remote object
source, resume, csv_properties, fields = ps.source_processing(
api, args, resume,
csv_properties=csv_properties, multi_label_data=multi_label_data,
session_file=session_file, path=path, log=log)
if source is not None:
args.source = bigml.api.get_source_id(source)
if args.multi_label and source:
multi_label_data = l.get_multi_label_data(source)
(args.objective_field,
labels,
all_labels,
multi_label_fields) = l.multi_label_sync(args.objective_field,
labels,
multi_label_data,
fields,
multi_label_fields)
if fields and args.export_fields:
fields.summary_csv(os.path.join(path, args.export_fields))
if args.dataset_file:
# dataset is retrieved from the contents of the given local JSON file
model_dataset, csv_properties, fields = u.read_local_resource(
args.dataset_file,
csv_properties=csv_properties)
if not args.datasets:
datasets = [model_dataset]
dataset = model_dataset
else:
datasets = u.read_datasets(args.datasets)
if not datasets:
# dataset is retrieved from the remote object
datasets, resume, csv_properties, fields = pd.dataset_processing(
source, api, args, resume,
fields=fields,
csv_properties=csv_properties,
multi_label_data=multi_label_data,
session_file=session_file, path=path, log=log)
#.........这里部分代码省略.........