本文整理汇总了Python中bigml.fields.Fields类的典型用法代码示例。如果您正苦于以下问题:Python Fields类的具体用法?Python Fields怎么用?Python Fields使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Fields类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: create_kfold_datasets_file
def create_kfold_datasets_file(args, api, common_options, resume=False):
"""Create the kfold dataset resources and store their ids in a file
one per line
"""
message = ('Creating the kfold datasets............\n')
u.log_message(message, log_file=session_file, console=args.verbosity)
if args.output_dir is None:
args.output_dir = a.NOW
# retrieve dataset
dataset_id = bigml.api.get_dataset_id(args.dataset)
if dataset_id:
dataset = api.check_resource(dataset_id, api.get_dataset)
# check that kfold_field is unique
fields = Fields(dataset, {"objective_field": args.objective_field,
"objective_field_present": True})
objective_id = fields.field_id(fields.objective_field)
kfold_field_name = avoid_duplicates(DEFAULT_KFOLD_FIELD, fields)
# create jsons to generate partial datasets
selecting_file_list, resume = create_kfold_json(args, kfold_field_name,
objective_id,
resume=resume)
# generate test datasets
datasets_file, resume = create_kfold_datasets(dataset_id, args,
selecting_file_list,
fields.objective_field,
kfold_field_name,
common_options,
resume=resume)
return datasets_file, fields.field_column_number(objective_id), resume
return None, None, None
示例2: create_kfold_datasets_file
def create_kfold_datasets_file(args, api, common_options, resume=False):
"""Create the kfold dataset resources and store their ids in a file
one per line
"""
message = ('Creating the kfold datasets............\n')
u.log_message(message, log_file=session_file, console=args.verbosity)
if args.output_dir is None:
args.output_dir = a.NOW
# retrieve dataset
dataset_id = bigml.api.get_dataset_id(args.dataset)
if dataset_id:
dataset = api.check_resource(dataset_id)
try:
args.objective_field = int(args.objective_field)
except (TypeError, ValueError):
pass
# if the user provided no objective field, try to use the one in the
# dataset
if args.objective_field is None:
try:
args.objective_field = dataset['object'][
'objective_field']['column_number']
except KeyError:
pass
# check that kfold_field is unique
fields = Fields(dataset, objective_field=args.objective_field,
objective_field_present=True)
try:
objective_id = fields.field_id(fields.objective_field)
objective_name = fields.field_name(objective_id)
except ValueError, exc:
sys.exit(exc)
kfold_field_name = avoid_duplicates(DEFAULT_KFOLD_FIELD, fields)
# create jsons to generate partial datasets
selecting_file_list, resume = create_kfold_json(args, kfold_field_name,
objective_id,
resume=resume)
# generate test datasets
datasets_file, resume = create_kfold_datasets(dataset_id, args,
selecting_file_list,
objective_name,
common_options,
resume=resume)
return datasets_file, objective_name, resume
示例3: best_first_search
def best_first_search(datasets_file, api, args, common_options,
staleness=None, penalty=None, objective_name=None,
resume=False):
"""Selecting the fields to be used in the model construction
"""
counter = 0
loop_counter = 0
features_file = os.path.normpath(os.path.join(args.output_dir,
FEATURES_LOG))
with open(features_file, u.open_mode("w")) as features_handler:
features_writer = csv.writer(features_handler, lineterminator="\n")
features_writer.writerow([
"step", "state", "score", "metric_value", "best_score"])
features_handler.flush()
if staleness is None:
staleness = DEFAULT_STALENESS
if penalty is None:
penalty = DEFAULT_PENALTY
# retrieving the first dataset in the file
try:
with open(datasets_file, u.open_mode("r")) as datasets_handler:
dataset_id = datasets_handler.readline().strip()
except IOError, exc:
sys.exit("Could not read the generated datasets file: %s" %
str(exc))
try:
stored_dataset = u.storage_file_name(args.output_dir, dataset_id)
with open(stored_dataset, u.open_mode("r")) as dataset_handler:
dataset = json.loads(dataset_handler.read())
except IOError:
dataset = api.check_resource(dataset_id,
query_string=ALL_FIELDS_QS)
# initial feature set
fields = Fields(dataset)
excluded_features = ([] if args.exclude_features is None else
args.exclude_features.split(
args.args_separator))
try:
excluded_ids = [fields.field_id(feature) for
feature in excluded_features]
objective_id = fields.field_id(objective_name)
except ValueError, exc:
sys.exit(exc)
示例4: get_fields_changes
def get_fields_changes(resource, referrer=None,
updatable_attrs=DEFAULT_UPDATABLE):
"""Changed field attributes
"""
if referrer is None:
referrer = {}
fields_attributes = {}
resource_fields = Fields(
{'resource': resource['resource'], 'object': resource}).fields
resource_type = get_resource_type(resource)
# for sources, extract all the updatable attributes
if resource_type == 'source':
updatable_attrs = SOURCE_UPDATABLE
for field_id in resource_fields.keys():
field_opts = {}
field = resource_fields[field_id]
for attribute in updatable_attrs:
if field.get(attribute):
field_opts.update({attribute: field[attribute]})
if field_opts != {}:
fields_attributes.update({field_id: field_opts})
return fields_attributes
# for the rest of resources, check which attributes changed
if referrer:
referrer_fields = Fields(
{'resource': referrer['resource'], 'object': referrer}).fields
for field_id in resource_fields.keys():
field_opts = {}
if not field_id in referrer_fields.keys():
continue
field = resource_fields[field_id]
for attribute in updatable_attrs:
ref_values = ["", referrer_fields[field_id].get(attribute, "")]
if not field.get(attribute, "") in ref_values:
field_opts.update({attribute: field[attribute]})
if field_opts != {}:
fields_attributes.update({field_id: field_opts})
return fields_attributes
示例5: test_ensemble
def test_ensemble(self,test_file):
assert self.authenticated, 'Not authenticated!'
# download a local copy of the ensemble
self.logger.info('Creating local ensemble')
local_ensemble = Ensemble(self.ensemble_res,api=self.api)
# make the Fields object
source = self.api.get_source(self.source_res)
fields = Fields(source['object']['fields'])
self.logger.info('Reading test data and generating predictions')
true_labels = []
predict_labels = []
pr = Profile()
pr.enable()
with open(test_file) as fid:
test_reader = csv.reader(fid)
# skip the header line
test_reader.next()
for row in test_reader:
row_list = [val for val in row]
true_labels.append(row_list.pop())
instance = fields.pair(row_list)
predict_labels.append(local_ensemble.predict(instance,
by_name=False,
method=1))
pr.disable()
ps = Stats(pr)
self.predict_time = ps.total_tt
# eval_args = {'combiner':1}
# evaluation = self.api.create_evaluation(self.ensemble_res,test_data,eval_args)
# check_resource(evaluation['resource'],self.api.get_evaluation)
# evaluation = self.api.get_evaluation(evaluation['resource'])
# matrix = evaluation['object']['result']['model']['confusion_matrix']
# self.predict_time = evaluation['object']['status']['elapsed']/1000
if self.regression:
self.results = (predict_labels,true_labels)
else:
self.results = make_confusion_matrix(true_labels,predict_labels)
示例6: get_input_fields
def get_input_fields(resource, referrer=None):
"""New list of input fields
"""
if referrer is None:
referrer = {}
input_fields_ids = resource.get('input_fields', [])
if referrer:
referrer_input_fields = [[]]
# compare fields by name
resource_fields = Fields(
{'resource': resource['resource'], 'object': resource})
referrer_fields = Fields(
{'resource': referrer['resource'], 'object': referrer})
input_fields = [resource_fields.field_name(field_id) for field_id in
input_fields_ids]
input_fields = sorted(input_fields)
referrer_type = get_resource_type(referrer)
if referrer_type == 'dataset':
referrer_fields = Fields(referrer_fields.preferred_fields())
referrer_fields_names = sorted( \
[field['name'] for _, field in referrer_fields.fields.items()])
else:
referrer_fields_names = sorted( \
referrer_fields.fields_by_name.keys())
# check referrer input fields to see if they are equal
referrer_input_fields.append(referrer_fields_names)
# check whether the resource has an objective field not included in
# the input fields list
resource_type = get_resource_type(resource)
if resource_type == 'model':
objective_id = resource.get('objective_field')
try:
objective_id = objective_id.get('id')
except AttributeError:
pass
referrer_objective = resource_fields.field_name(
objective_id)
referrer_input_fields.append([name for name in
referrer_fields_names
if name != referrer_objective])
if input_fields in referrer_input_fields:
return []
return referrer_fields.fields.keys()
示例7: open
# retrieving the first dataset in the file
try:
with open(datasets_file, u.open_mode("r")) as datasets_handler:
dataset_id = datasets_handler.readline().strip()
except IOError, exc:
sys.exit("Could not read the generated datasets file: %s" %
str(exc))
try:
stored_dataset = u.storage_file_name(args.output_dir, dataset_id)
with open(stored_dataset, u.open_mode("r")) as dataset_handler:
dataset = json.loads(dataset_handler.read())
except IOError:
dataset = api.check_resource(dataset_id,
query_string=ALL_FIELDS_QS)
# initial feature set
fields = Fields(dataset)
excluded_features = ([] if args.exclude_features is None else
args.exclude_features.split(
args.args_separator))
try:
excluded_ids = [fields.field_id(feature) for
feature in excluded_features]
objective_id = fields.field_id(objective_name)
except ValueError, exc:
sys.exit(exc)
field_ids = [field_id for field_id in fields.preferred_fields()
if field_id != objective_id and
not field_id in excluded_ids]
# headers are extended with a column per field
fields_names = [fields.field_name(field_id) for field_id in field_ids]
features_header.extend(fields_names)
示例8: compute_output
#.........这里部分代码省略.........
if args.max_categories > 0 and len(datasets) == 1:
if pd.check_max_categories(fields.fields[args.objective_id_]):
distribution = pd.get_categories_distribution(dataset,
args.objective_id_)
if distribution and len(distribution) > args.max_categories:
categories = [element[0] for element in distribution]
other_label = pd.create_other_label(categories, other_label)
datasets, resume = pd.create_categories_datasets(
dataset, distribution, fields, args,
api, resume, session_file=session_file, path=path, log=log,
other_label=other_label)
else:
sys.exit("The provided objective field is not categorical nor "
"a full terms only text field. "
"Only these fields can be used with"
" --max-categories")
# If multi-dataset flag is on, generate a new dataset from the given
# list of datasets
if args.multi_dataset:
dataset, resume = pd.create_new_dataset(
datasets, api, args, resume, fields=fields,
session_file=session_file, path=path, log=log)
datasets = [dataset]
# Check if the dataset has a generators file associated with it, and
# generate a new dataset with the specified field structure. Also
# if the --to-dataset flag is used to clone or sample the original dataset
if args.new_fields or (args.sample_rate != 1 and args.no_model) or \
(args.lisp_filter or args.json_filter) and not has_source(args):
if fields is None:
if isinstance(dataset, basestring):
dataset = u.check_resource(dataset, api=api)
fields = Fields(dataset, csv_properties)
args.objective_id_ = get_objective_id(args, fields)
args.objective_name_ = fields.field_name(args.objective_id_)
dataset, resume = pd.create_new_dataset(
dataset, api, args, resume, fields=fields,
session_file=session_file, path=path, log=log)
datasets[0] = dataset
# rebuild fields structure for new ids and fields
csv_properties.update({'objective_field': args.objective_name_,
'objective_field_present': True})
fields = pd.get_fields_structure(dataset, csv_properties)
args.objective_id_ = get_objective_id(args, fields)
if args.multi_label and dataset and multi_label_data is None:
multi_label_data = l.get_multi_label_data(dataset)
(args.objective_field,
labels,
all_labels,
multi_label_fields) = l.multi_label_sync(args.objective_field,
labels,
multi_label_data,
fields, multi_label_fields)
if dataset:
# retrieves max_categories data, if any
args.max_categories = get_metadata(dataset, 'max_categories',
args.max_categories)
other_label = get_metadata(dataset, 'other_label',
other_label)
if fields and args.export_fields:
fields.summary_csv(os.path.join(path, args.export_fields))
if args.model_file:
# model is retrieved from the contents of the given local JSON file
model, csv_properties, fields = u.read_local_resource(
示例9: reify_dataset
def reify_dataset(self, resource_id):
"""Extracts the REST API arguments from the dataset JSON structure
"""
child = self.get_resource(resource_id)
origin, parent_id = u.get_origin_info(child)
parent = self.get_resource(parent_id)
opts = {"create": {}, "update": {}, "get": {}}
# as two-steps result from a cluster or batch prediction, centroid
# or anomaly score
grandparent = parent
if origin in ['origin_batch_resource', 'cluster']:
if origin == "cluster":
opts['create'].update({"centroid": child['centroid']})
grandparents = u.get_origin_info(parent)
# batch resources have two parents, choose the dataset
if origin == "origin_batch_resource" and \
isinstance(grandparents, list):
for gp_origin, grandparent in grandparents:
if gp_origin == "dataset":
break
else:
_, grandparent = grandparents
grandparent = self.get_resource(grandparent)
# options common to all model types
call = "update" if origin == "origin_batch_resource" else "create"
u.common_dataset_opts(child, grandparent, opts, call=call)
# update options
dataset_defaults = DEFAULTS["dataset"].get("update", {})
for attribute, default_value in dataset_defaults.items():
opts["update"].update(
u.default_setting(child, attribute, *default_value))
# name, exclude automatic naming alternatives
autonames = [u'']
u.non_automatic_name(child, opts, autonames=autonames)
# objective field
resource_fields = Fields(
{'resource': child['resource'], 'object': child})
objective_id = child['objective_field']['id']
preferred_fields = resource_fields.preferred_fields()
# if there's no preferred fields, use the fields structure
if len(preferred_fields.keys()) == 0:
preferred_fields = resource_fields.fields
max_column = sorted([field['column_number']
for _, field in preferred_fields.items()
if field['optype'] != "text"],
reverse=True)[0]
objective_column = resource_fields.fields[objective_id][ \
'column_number']
if objective_column != max_column:
opts['create'].update({"objective_field": {"id": objective_id}})
if origin != "origin_batch_resource":
# resize
if (child['size'] != grandparent['size'] and
get_resource_type(parent) == 'source'):
opts['create'].update({"size": child['size']})
# generated fields
if child.get('new_fields', None):
new_fields = child['new_fields']
for new_field in new_fields:
new_field['field'] = new_field['generator']
del new_field['generator']
opts['create'].update({"new_fields": new_fields})
u.range_opts(child, grandparent, opts)
# for batch_predictions, batch_clusters, batch_anomalies generated
# datasets, attributes cannot be set at creation time, so we
# must update the resource instead
suffix = None
if origin == "origin_batch_resource":
opts["update"].update(opts["create"])
opts["create"] = {}
suffix = "['object']['output_dataset_resource']"
calls = u.build_calls(resource_id, [parent_id], opts, suffix=suffix)
self.add(resource_id, calls)
示例10: reify_dataset
def reify_dataset(self, resource_id):
"""Extracts the REST API arguments from the dataset JSON structure
"""
child = self.get_resource(resource_id)
origin, parent_id = u.get_origin_info(child)
parent = self.get_resource(parent_id)
opts = {"create": {}, "update": {}}
# as two-steps result from a cluster or batch prediction, centroid
# or anomaly score
if origin in ["origin_batch_resource", "cluster"]:
if origin == "cluster":
opts["create"].update({"centroid": child["centroid"]})
_, grandparent = u.get_origin_info(parent)
grandparent = self.get_resource(grandparent)
else:
grandparent = parent
# options common to all model types
u.common_dataset_opts(child, grandparent, opts)
# update options
dataset_defaults = DEFAULTS["dataset"].get("update", {})
dataset_defaults.update(COMMON_DEFAULTS.get("update", {}))
for attribute, default_value in dataset_defaults.items():
opts["update"].update(u.default_setting(child, attribute, *default_value))
# name, exclude automatic naming alternatives
autonames = [u""]
suffixes = [
u"filtered",
u"sampled",
u"dataset",
u"extended",
u"- batchprediction",
u"- batchanomalyscore",
u"- batchcentroid",
u"- merged",
]
autonames.extend([u"%s %s" % (grandparent.get("name", ""), suffix) for suffix in suffixes])
autonames.append(u"%s's dataset" % ".".join(parent["name"].split(".")[0:-1]))
autonames.append(u"%s' dataset" % ".".join(parent["name"].split(".")[0:-1]))
autonames.append(u"Cluster %s - %s" % (int(child.get("centroid", "0"), base=16), parent["name"]))
autonames.append(u"Dataset from %s model - segment" % parent["name"])
u.non_automatic_name(child, opts, autonames=autonames)
# objective field
resource_fields = Fields({"resource": child["resource"], "object": child})
objective_id = child["objective_field"]["id"]
preferred_fields = resource_fields.preferred_fields()
max_column = sorted([field["column_number"] for _, field in preferred_fields.items()], reverse=True)[0]
objective_column = resource_fields.fields[objective_id]["column_number"]
if objective_column != max_column:
opts["create"].update({"objective_field": {"id": objective_id}})
# resize
if child["size"] != grandparent["size"] and get_resource_type(parent) == "source":
opts["create"].update({"size": child["size"]})
# generated fields
if child.get("new_fields", None):
new_fields = child["new_fields"]
for new_field in new_fields:
new_field["field"] = new_field["generator"]
del new_field["generator"]
opts["create"].update({"new_fields": new_fields})
u.range_opts(child, grandparent, opts)
calls = u.build_calls(resource_id, [parent_id], opts)
self.add(resource_id, calls)
示例11: SymptomInsert
def SymptomInsert(self, model):
session = model.key.get()
if session is None:
raise endpoints.NotFoundException('Session not found.')
if session.symptoms is None :
session.symptoms = Symptoms()
for s in session.symptoms.items :
if s.name == model.name :
s.value = model.value
break
else :
symptom = Symptom(name=model.name, value=model.value)
session.symptoms.items.append(symptom)
logging.debug('starting prediction')
p = {}
for symptom in session.symptoms.items:
p[symptom.name] = symptom.value
bigml_local_model = bigml_model.get_local_model()
prediction = bigml_local_model.predict(p, add_confidence=True, add_path=True, add_distribution=True, add_count=True, add_next=True)
prediction_all = bigml_local_model.predict(p, multiple=5)
if prediction['next'] is not None :
logging.debug('got fields %s' % bigml_local_model.fields)
fields = Fields(bigml_local_model.fields)
field_id = fields.field_id(prediction['next'])
field = bigml_local_model.fields[field_id]
if 'label' in field :
label = field['label']
else :
label = field['name']
if 'description' in field :
description = field['description']
else :
description = ''
if 'categories' in field['summary'] :
cat = []
for c in field['summary']['categories'] :
cat.append(c[0])
session.next = Question(label=label, description=description, type=field['optype'], categories=cat)
else:
session.next = Question(label=label, description=description, type=field['optype'])
else :
session.next = None
session.outcome = Outcome(name=prediction['prediction'], confidence=str(prediction['confidence']), full=prediction_all)
session.put()
return session
示例12: main
def main(args=sys.argv[1:]):
"""Parses command-line parameters and calls the actual main function.
"""
parser = argparse.ArgumentParser(
description="Dataset analysis",
epilog="BigML, Inc")
# source with activity data
parser.add_argument('--source',
action='store',
dest='source',
default=None,
help="Full path to file")
# create private links or not
parser.add_argument('--share',
action='store_true',
default=False,
help="Share created resources or not")
# weight models or not
parser.add_argument('--balance',
action='store_true',
default=False,
help="Weight model or not")
args = parser.parse_args(args)
if not args.source:
sys.exit("You need to provide a valid path to a source")
api = BigML()
name = "Sean's activity"
log("Creating source...")
source_args = {'name': name}
source = api.create_source(args.source, source_args)
if not api.ok(source):
sys.exit("Source isn't ready...")
log("Creating dataset...")
dataset = api.create_dataset(source)
if not api.ok(dataset):
sys.exit("Dataset isn't ready...")
log("Transforming dataset...")
# Extends dataset with new field for previous activity, previous duration,
# start day, and start hour. Removes first column, start, and end fields.
new_dataset_args = {
'name': name,
'new_fields': new_fields(),
'all_but': excluded_fields()}
new_dataset = api.create_dataset(dataset, new_dataset_args)
if not api.ok(new_dataset):
sys.exit("Dataset isn't ready...")
# Set objective field to activity
fields = Fields(new_dataset['object']['fields'])
objective_id = fields.field_id('activity')
new_dataset_args = {
'objective_field': {'id': objective_id}}
new_dataset = api.update_dataset(new_dataset, new_dataset_args)
# Create training and test set for evaluation
log("Splitting dataset...")
training, test = train_test_split(api, new_dataset)
log("Creating a model using the training dataset...")
model_args = {
'objective_field': objective_id,
'balance_objective': args.balance,
'name': training['object']['name']}
model = api.create_model(training, model_args)
if not api.ok(model):
sys.exit("Model isn't ready...")
# Creating an evaluation
log("Evaluating model against the test dataset...")
eval_args = {
'name': name + ' - 80% vs 20%'}
evaluation = api.create_evaluation(model, test, eval_args)
if not api.ok(evaluation):
sys.exit("Evaluation isn't ready...")
log("Creating model for the full dataset...")
model = api.create_model(new_dataset, model_args)
if not api.ok(model):
sys.exit("Model isn't ready...")
# Create private links
if args.share:
log("Sharing resources...")
dataset_private_link = share_dataset(api, new_dataset)
model_private_link = share_model(api, model)
evaluation_private_link = share_evaluation(api, evaluation)
log(dataset_private_link)
log(model_private_link)
log(evaluation_private_link)
示例13: best_first_search
def best_first_search(datasets_file, api, args, common_options,
staleness=None, penalty=None, objective_name=None,
resume=False):
"""Selecting the fields to be used in the model construction
"""
counter = 0
loop_counter = 0
features_file = os.path.normpath(os.path.join(args.output_dir,
FEATURES_LOG))
with open(features_file, 'w', 0) as features_handler:
features_writer = csv.writer(features_handler, lineterminator="\n")
features_writer.writerow([
"step", "state", "score", "metric_value", "best_score"])
features_handler.flush()
if staleness is None:
staleness = DEFAULT_STALENESS
if penalty is None:
penalty = DEFAULT_PENALTY
# retrieving the first dataset in the file
try:
with open(datasets_file) as datasets_handler:
dataset_id = datasets_handler.readline().strip()
except IOError, exc:
sys.exit("Could not read the generated datasets file: %s" %
str(exc))
dataset = api.check_resource(dataset_id, api.get_dataset)
# initial feature set
fields = Fields(dataset)
excluded_features = ([] if args.exclude_features is None else
args.exclude_features.split(
args.args_separator))
excluded_ids = [fields.field_id(feature) for
feature in excluded_features]
objective_id = fields.field_id(objective_name)
field_ids = [field_id for field_id in fields.preferred_fields()
if field_id != objective_id and
not field_id in excluded_ids]
initial_state = [False for field_id in field_ids]
open_list = [(initial_state, - float('inf'), -float('inf'))]
closed_list = []
best_state, best_score, best_metric_value = open_list[0]
best_unchanged_count = 0
metric = args.maximize
while best_unchanged_count < staleness and open_list:
loop_counter += 1
features_set = find_max_state(open_list)
state, score, metric_value = features_set
features_writer.writerow([
loop_counter, [int(in_set) for in_set in state],
score, metric_value, best_score])
features_handler.flush()
state_fields = [fields.field_name(field_ids[index])
for (index, in_set) in enumerate(state) if in_set]
closed_list.append(features_set)
open_list.remove(features_set)
if (score - EPSILON) > best_score:
best_state, best_score, best_metric_value = features_set
best_unchanged_count = 0
if state_fields:
message = 'New best state: %s\n' % (state_fields)
u.log_message(message, log_file=session_file,
console=args.verbosity)
if metric in PERCENT_EVAL_METRICS:
message = '%s = %0.2f%% (score = %s)\n' % (
metric.capitalize(), metric_value * 100, score)
else:
message = '%s = %f (score = %s)\n' % (
metric.capitalize(),metric_value, score)
u.log_message(message, log_file=session_file,
console=args.verbosity)
else:
best_unchanged_count += 1
children = expand_state(state)
for child in children:
if (child not in [state for state, _, _ in open_list] and
child not in [state for state, _, _ in closed_list]):
input_fields = [fields.field_name(field_id)
for (i, field_id)
in enumerate(field_ids) if child[i]]
# create models and evaluation with input_fields
args.model_fields = args.args_separator.join(input_fields)
counter += 1
(score,
metric_value,
metric,
resume) = kfold_evaluate(datasets_file,
args, counter, common_options,
penalty=penalty, resume=resume,
metric=metric)
open_list.append((child, score, metric_value))
best_features = [fields.field_name(field_ids[i]) for (i, score)
in enumerate(best_state) if score]
message = (u'The best feature subset is: %s \n'
% u", ".join(best_features))
u.log_message(message, log_file=session_file, console=1)
if metric in PERCENT_EVAL_METRICS:
message = (u'%s = %0.2f%%\n' % (metric.capitalize(),
#.........这里部分代码省略.........
示例14: create_kfold_datasets_file
def create_kfold_datasets_file(args, api, common_options, resume=False):
"""Create the kfold dataset resources and store their ids in a file
one per line
"""
message = ('Creating the kfold datasets............\n')
u.log_message(message, log_file=session_file, console=args.verbosity)
if args.output_dir is None:
args.output_dir = a.NOW
csv_properties = {}
fields = None
dataset = None
datasets = []
if args.dataset_file:
# dataset is retrieved from the contents of the given local JSON file
model_dataset, csv_properties, fields = u.read_local_resource(
args.dataset_file,
csv_properties=csv_properties)
if not args.datasets:
datasets = [model_dataset]
dataset = model_dataset
else:
datasets = u.read_datasets(args.datasets)
dataset_id = dataset['resource']
elif args.dataset:
dataset_id = bigml.api.get_dataset_id(args.dataset)
datasets = [dataset_id]
elif args.dataset_ids:
datasets = args.dataset_ids
dataset_id = datasets[0]
if dataset_id:
if not dataset:
dataset = api.check_resource(dataset_id,
query_string=ALL_FIELDS_QS)
try:
args.objective_field = int(args.objective_field)
except (TypeError, ValueError):
pass
# if the user provided no objective field, try to use the one in the
# dataset
if args.objective_field is None:
try:
args.objective_field = dataset['object'][
'objective_field']['column_number']
except KeyError:
pass
# check that kfold_field is unique
fields = Fields(dataset, objective_field=args.objective_field,
objective_field_present=True)
if args.random_fields:
default_candidates_limits(args, fields)
try:
objective_id = fields.field_id(fields.objective_field)
objective_name = fields.field_name(objective_id)
except ValueError, exc:
sys.exit(exc)
kfold_field_name = avoid_duplicates(DEFAULT_KFOLD_FIELD, fields)
# create jsons to generate partial datasets
selecting_file_list, resume = create_kfold_json(args, kfold_field_name,
objective_id,
resume=resume)
# generate test datasets
datasets_file, resume = create_kfold_datasets(dataset_id, args,
selecting_file_list,
common_options,
resume=resume)
return datasets_file, objective_name, resume
示例15: compute_output
def compute_output(api, args, training_set, test_set=None, output=None,
objective_field=None,
description=None,
field_attributes=None,
types=None,
dataset_fields=None,
model_fields=None,
name=None, training_set_header=True,
test_set_header=True, model_ids=None,
votes_files=None, resume=False, fields_map=None):
""" Creates one or more models using the `training_set` or uses the ids
of previously created BigML models to make predictions for the `test_set`.
"""
source = None
dataset = None
model = None
models = None
fields = None
path = u.check_dir(output)
session_file = "%s%s%s" % (path, os.sep, SESSIONS_LOG)
csv_properties = {}
# If logging is required, open the file for logging
log = None
if args.log_file:
u.check_dir(args.log_file)
log = args.log_file
# If --clear_logs the log files are cleared
if args.clear_logs:
try:
open(log, 'w', 0).close()
except IOError:
pass
if (training_set or (args.evaluate and test_set)):
if resume:
resume, args.source = u.checkpoint(u.is_source_created, path,
bigml.api, debug=args.debug)
if not resume:
message = u.dated("Source not found. Resuming.\n")
u.log_message(message, log_file=session_file,
console=args.verbosity)
# If neither a previous source, dataset or model are provided.
# we create a new one. Also if --evaluate and test data are provided
# we create a new dataset to test with.
data_set = None
if (training_set and not args.source and not args.dataset and
not args.model and not args.models):
data_set = training_set
data_set_header = training_set_header
elif (args.evaluate and test_set and not args.source):
data_set = test_set
data_set_header = test_set_header
if not data_set is None:
source_args = {
"name": name,
"description": description,
"category": args.category,
"tags": args.tag,
"source_parser": {"header": data_set_header}}
message = u.dated("Creating source.\n")
u.log_message(message, log_file=session_file, console=args.verbosity)
source = api.create_source(data_set, source_args,
progress_bar=args.progress_bar)
source = api.check_resource(source, api.get_source)
message = u.dated("Source created: %s\n" % u.get_url(source, api))
u.log_message(message, log_file=session_file, console=args.verbosity)
u.log_message("%s\n" % source['resource'], log_file=log)
fields = Fields(source['object']['fields'],
source['object']['source_parser']['missing_tokens'],
source['object']['source_parser']['locale'])
source_file = open(path + '/source', 'w', 0)
source_file.write("%s\n" % source['resource'])
source_file.write("%s\n" % source['object']['name'])
source_file.flush()
source_file.close()
# If a source is provided, we retrieve it.
elif args.source:
message = u.dated("Retrieving source. %s\n" %
u.get_url(args.source, api))
u.log_message(message, log_file=session_file, console=args.verbosity)
source = api.get_source(args.source)
# If we already have source, we check that is finished and extract the
# fields, and update them if needed.
if source:
if source['object']['status']['code'] != bigml.api.FINISHED:
message = u.dated("Retrieving source. %s\n" %
u.get_url(source, api))
u.log_message(message, log_file=session_file,
console=args.verbosity)
source = api.check_resource(source, api.get_source)
csv_properties = {'missing_tokens':
source['object']['source_parser']['missing_tokens'],
#.........这里部分代码省略.........