本文整理汇总了Python中bigml.fields.Fields.field_id方法的典型用法代码示例。如果您正苦于以下问题:Python Fields.field_id方法的具体用法?Python Fields.field_id怎么用?Python Fields.field_id使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类bigml.fields.Fields
的用法示例。
在下文中一共展示了Fields.field_id方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: create_kfold_datasets_file
# 需要导入模块: from bigml.fields import Fields [as 别名]
# 或者: from bigml.fields.Fields import field_id [as 别名]
def create_kfold_datasets_file(args, api, common_options, resume=False):
"""Create the kfold dataset resources and store their ids in a file
one per line
"""
message = ('Creating the kfold datasets............\n')
u.log_message(message, log_file=session_file, console=args.verbosity)
if args.output_dir is None:
args.output_dir = a.NOW
# retrieve dataset
dataset_id = bigml.api.get_dataset_id(args.dataset)
if dataset_id:
dataset = api.check_resource(dataset_id, api.get_dataset)
# check that kfold_field is unique
fields = Fields(dataset, {"objective_field": args.objective_field,
"objective_field_present": True})
objective_id = fields.field_id(fields.objective_field)
kfold_field_name = avoid_duplicates(DEFAULT_KFOLD_FIELD, fields)
# create jsons to generate partial datasets
selecting_file_list, resume = create_kfold_json(args, kfold_field_name,
objective_id,
resume=resume)
# generate test datasets
datasets_file, resume = create_kfold_datasets(dataset_id, args,
selecting_file_list,
fields.objective_field,
kfold_field_name,
common_options,
resume=resume)
return datasets_file, fields.field_column_number(objective_id), resume
return None, None, None
示例2: best_first_search
# 需要导入模块: from bigml.fields import Fields [as 别名]
# 或者: from bigml.fields.Fields import field_id [as 别名]
def best_first_search(datasets_file, api, args, common_options,
staleness=None, penalty=None, objective_name=None,
resume=False):
"""Selecting the fields to be used in the model construction
"""
counter = 0
loop_counter = 0
features_file = os.path.normpath(os.path.join(args.output_dir,
FEATURES_LOG))
with open(features_file, u.open_mode("w")) as features_handler:
features_writer = csv.writer(features_handler, lineterminator="\n")
features_writer.writerow([
"step", "state", "score", "metric_value", "best_score"])
features_handler.flush()
if staleness is None:
staleness = DEFAULT_STALENESS
if penalty is None:
penalty = DEFAULT_PENALTY
# retrieving the first dataset in the file
try:
with open(datasets_file, u.open_mode("r")) as datasets_handler:
dataset_id = datasets_handler.readline().strip()
except IOError, exc:
sys.exit("Could not read the generated datasets file: %s" %
str(exc))
try:
stored_dataset = u.storage_file_name(args.output_dir, dataset_id)
with open(stored_dataset, u.open_mode("r")) as dataset_handler:
dataset = json.loads(dataset_handler.read())
except IOError:
dataset = api.check_resource(dataset_id,
query_string=ALL_FIELDS_QS)
# initial feature set
fields = Fields(dataset)
excluded_features = ([] if args.exclude_features is None else
args.exclude_features.split(
args.args_separator))
try:
excluded_ids = [fields.field_id(feature) for
feature in excluded_features]
objective_id = fields.field_id(objective_name)
except ValueError, exc:
sys.exit(exc)
示例3: create_kfold_datasets_file
# 需要导入模块: from bigml.fields import Fields [as 别名]
# 或者: from bigml.fields.Fields import field_id [as 别名]
def create_kfold_datasets_file(args, api, common_options, resume=False):
"""Create the kfold dataset resources and store their ids in a file
one per line
"""
message = ('Creating the kfold datasets............\n')
u.log_message(message, log_file=session_file, console=args.verbosity)
if args.output_dir is None:
args.output_dir = a.NOW
# retrieve dataset
dataset_id = bigml.api.get_dataset_id(args.dataset)
if dataset_id:
dataset = api.check_resource(dataset_id)
try:
args.objective_field = int(args.objective_field)
except (TypeError, ValueError):
pass
# if the user provided no objective field, try to use the one in the
# dataset
if args.objective_field is None:
try:
args.objective_field = dataset['object'][
'objective_field']['column_number']
except KeyError:
pass
# check that kfold_field is unique
fields = Fields(dataset, objective_field=args.objective_field,
objective_field_present=True)
try:
objective_id = fields.field_id(fields.objective_field)
objective_name = fields.field_name(objective_id)
except ValueError, exc:
sys.exit(exc)
kfold_field_name = avoid_duplicates(DEFAULT_KFOLD_FIELD, fields)
# create jsons to generate partial datasets
selecting_file_list, resume = create_kfold_json(args, kfold_field_name,
objective_id,
resume=resume)
# generate test datasets
datasets_file, resume = create_kfold_datasets(dataset_id, args,
selecting_file_list,
objective_name,
common_options,
resume=resume)
return datasets_file, objective_name, resume
示例4: create_kfold_datasets_file
# 需要导入模块: from bigml.fields import Fields [as 别名]
# 或者: from bigml.fields.Fields import field_id [as 别名]
def create_kfold_datasets_file(args, api, common_options, resume=False):
"""Create the kfold dataset resources and store their ids in a file
one per line
"""
message = ('Creating the kfold datasets............\n')
u.log_message(message, log_file=session_file, console=args.verbosity)
if args.output_dir is None:
args.output_dir = a.NOW
csv_properties = {}
fields = None
dataset = None
datasets = []
if args.dataset_file:
# dataset is retrieved from the contents of the given local JSON file
model_dataset, csv_properties, fields = u.read_local_resource(
args.dataset_file,
csv_properties=csv_properties)
if not args.datasets:
datasets = [model_dataset]
dataset = model_dataset
else:
datasets = u.read_datasets(args.datasets)
dataset_id = dataset['resource']
elif args.dataset:
dataset_id = bigml.api.get_dataset_id(args.dataset)
datasets = [dataset_id]
elif args.dataset_ids:
datasets = args.dataset_ids
dataset_id = datasets[0]
if dataset_id:
if not dataset:
dataset = api.check_resource(dataset_id,
query_string=ALL_FIELDS_QS)
try:
args.objective_field = int(args.objective_field)
except (TypeError, ValueError):
pass
# if the user provided no objective field, try to use the one in the
# dataset
if args.objective_field is None:
try:
args.objective_field = dataset['object'][
'objective_field']['column_number']
except KeyError:
pass
# check that kfold_field is unique
fields = Fields(dataset, objective_field=args.objective_field,
objective_field_present=True)
if args.random_fields:
default_candidates_limits(args, fields)
try:
objective_id = fields.field_id(fields.objective_field)
objective_name = fields.field_name(objective_id)
except ValueError, exc:
sys.exit(exc)
kfold_field_name = avoid_duplicates(DEFAULT_KFOLD_FIELD, fields)
# create jsons to generate partial datasets
selecting_file_list, resume = create_kfold_json(args, kfold_field_name,
objective_id,
resume=resume)
# generate test datasets
datasets_file, resume = create_kfold_datasets(dataset_id, args,
selecting_file_list,
common_options,
resume=resume)
return datasets_file, objective_name, resume
示例5: str
# 需要导入模块: from bigml.fields import Fields [as 别名]
# 或者: from bigml.fields.Fields import field_id [as 别名]
sys.exit("Could not read the generated datasets file: %s" %
str(exc))
try:
stored_dataset = u.storage_file_name(args.output_dir, dataset_id)
with open(stored_dataset, u.open_mode("r")) as dataset_handler:
dataset = json.loads(dataset_handler.read())
except IOError:
dataset = api.check_resource(dataset_id,
query_string=ALL_FIELDS_QS)
# initial feature set
fields = Fields(dataset)
excluded_features = ([] if args.exclude_features is None else
args.exclude_features.split(
args.args_separator))
try:
excluded_ids = [fields.field_id(feature) for
feature in excluded_features]
objective_id = fields.field_id(objective_name)
except ValueError, exc:
sys.exit(exc)
field_ids = [field_id for field_id in fields.preferred_fields()
if field_id != objective_id and
not field_id in excluded_ids]
# headers are extended with a column per field
fields_names = [fields.field_name(field_id) for field_id in field_ids]
features_header.extend(fields_names)
features_writer.writerow(features_header)
initial_state = [False for field_id in field_ids]
open_list = [(initial_state, - float('inf'), -float('inf'), 0)]
closed_list = []
best_state, best_score, best_metric_value, best_counter = open_list[0]
示例6: compute_output
# 需要导入模块: from bigml.fields import Fields [as 别名]
# 或者: from bigml.fields.Fields import field_id [as 别名]
#.........这里部分代码省略.........
source['object']['source_parser']['locale'])
source_file = open(path + '/source', 'w', 0)
source_file.write("%s\n" % source['resource'])
source_file.write("%s\n" % source['object']['name'])
source_file.flush()
source_file.close()
# If a source is provided, we retrieve it.
elif args.source:
message = u.dated("Retrieving source. %s\n" %
u.get_url(args.source, api))
u.log_message(message, log_file=session_file, console=args.verbosity)
source = api.get_source(args.source)
# If we already have source, we check that is finished and extract the
# fields, and update them if needed.
if source:
if source['object']['status']['code'] != bigml.api.FINISHED:
message = u.dated("Retrieving source. %s\n" %
u.get_url(source, api))
u.log_message(message, log_file=session_file,
console=args.verbosity)
source = api.check_resource(source, api.get_source)
csv_properties = {'missing_tokens':
source['object']['source_parser']['missing_tokens'],
'data_locale':
source['object']['source_parser']['locale']}
fields = Fields(source['object']['fields'], **csv_properties)
update_fields = {}
if field_attributes:
for (column, value) in field_attributes.iteritems():
update_fields.update({
fields.field_id(column): value})
message = u.dated("Updating source. %s\n" %
u.get_url(source, api))
u.log_message(message, log_file=session_file,
console=args.verbosity)
source = api.update_source(source, {"fields": update_fields})
update_fields = {}
if types:
for (column, value) in types.iteritems():
update_fields.update({
fields.field_id(column): {'optype': value}})
message = u.dated("Updating source. %s\n" %
u.get_url(source, api))
u.log_message(message, log_file=session_file,
console=args.verbosity)
source = api.update_source(source, {"fields": update_fields})
if (training_set or args.source or (args.evaluate and test_set)):
if resume:
resume, args.dataset = u.checkpoint(u.is_dataset_created, path,
bigml.api,
debug=args.debug)
if not resume:
message = u.dated("Dataset not found. Resuming.\n")
u.log_message(message, log_file=session_file,
console=args.verbosity)
# If we have a source but not dataset or model has been provided, we
# create a new dataset if the no_dataset option isn't set up. Also
# if evaluate is set and test_set has been provided.
if ((source and not args.dataset and not args.model and not model_ids and
not args.no_dataset) or
(args.evaluate and args.test_set and not args.dataset)):
示例7: SymptomInsert
# 需要导入模块: from bigml.fields import Fields [as 别名]
# 或者: from bigml.fields.Fields import field_id [as 别名]
def SymptomInsert(self, model):
session = model.key.get()
if session is None:
raise endpoints.NotFoundException('Session not found.')
if session.symptoms is None :
session.symptoms = Symptoms()
for s in session.symptoms.items :
if s.name == model.name :
s.value = model.value
break
else :
symptom = Symptom(name=model.name, value=model.value)
session.symptoms.items.append(symptom)
logging.debug('starting prediction')
p = {}
for symptom in session.symptoms.items:
p[symptom.name] = symptom.value
bigml_local_model = bigml_model.get_local_model()
prediction = bigml_local_model.predict(p, add_confidence=True, add_path=True, add_distribution=True, add_count=True, add_next=True)
prediction_all = bigml_local_model.predict(p, multiple=5)
if prediction['next'] is not None :
logging.debug('got fields %s' % bigml_local_model.fields)
fields = Fields(bigml_local_model.fields)
field_id = fields.field_id(prediction['next'])
field = bigml_local_model.fields[field_id]
if 'label' in field :
label = field['label']
else :
label = field['name']
if 'description' in field :
description = field['description']
else :
description = ''
if 'categories' in field['summary'] :
cat = []
for c in field['summary']['categories'] :
cat.append(c[0])
session.next = Question(label=label, description=description, type=field['optype'], categories=cat)
else:
session.next = Question(label=label, description=description, type=field['optype'])
else :
session.next = None
session.outcome = Outcome(name=prediction['prediction'], confidence=str(prediction['confidence']), full=prediction_all)
session.put()
return session
示例8: main
# 需要导入模块: from bigml.fields import Fields [as 别名]
# 或者: from bigml.fields.Fields import field_id [as 别名]
def main(args=sys.argv[1:]):
"""Parses command-line parameters and calls the actual main function.
"""
parser = argparse.ArgumentParser(
description="Dataset analysis",
epilog="BigML, Inc")
# source with activity data
parser.add_argument('--source',
action='store',
dest='source',
default=None,
help="Full path to file")
# create private links or not
parser.add_argument('--share',
action='store_true',
default=False,
help="Share created resources or not")
# weight models or not
parser.add_argument('--balance',
action='store_true',
default=False,
help="Weight model or not")
args = parser.parse_args(args)
if not args.source:
sys.exit("You need to provide a valid path to a source")
api = BigML()
name = "Sean's activity"
log("Creating source...")
source_args = {'name': name}
source = api.create_source(args.source, source_args)
if not api.ok(source):
sys.exit("Source isn't ready...")
log("Creating dataset...")
dataset = api.create_dataset(source)
if not api.ok(dataset):
sys.exit("Dataset isn't ready...")
log("Transforming dataset...")
# Extends dataset with new field for previous activity, previous duration,
# start day, and start hour. Removes first column, start, and end fields.
new_dataset_args = {
'name': name,
'new_fields': new_fields(),
'all_but': excluded_fields()}
new_dataset = api.create_dataset(dataset, new_dataset_args)
if not api.ok(new_dataset):
sys.exit("Dataset isn't ready...")
# Set objective field to activity
fields = Fields(new_dataset['object']['fields'])
objective_id = fields.field_id('activity')
new_dataset_args = {
'objective_field': {'id': objective_id}}
new_dataset = api.update_dataset(new_dataset, new_dataset_args)
# Create training and test set for evaluation
log("Splitting dataset...")
training, test = train_test_split(api, new_dataset)
log("Creating a model using the training dataset...")
model_args = {
'objective_field': objective_id,
'balance_objective': args.balance,
'name': training['object']['name']}
model = api.create_model(training, model_args)
if not api.ok(model):
sys.exit("Model isn't ready...")
# Creating an evaluation
log("Evaluating model against the test dataset...")
eval_args = {
'name': name + ' - 80% vs 20%'}
evaluation = api.create_evaluation(model, test, eval_args)
if not api.ok(evaluation):
sys.exit("Evaluation isn't ready...")
log("Creating model for the full dataset...")
model = api.create_model(new_dataset, model_args)
if not api.ok(model):
sys.exit("Model isn't ready...")
# Create private links
if args.share:
log("Sharing resources...")
dataset_private_link = share_dataset(api, new_dataset)
model_private_link = share_model(api, model)
evaluation_private_link = share_evaluation(api, evaluation)
log(dataset_private_link)
log(model_private_link)
log(evaluation_private_link)
示例9: best_first_search
# 需要导入模块: from bigml.fields import Fields [as 别名]
# 或者: from bigml.fields.Fields import field_id [as 别名]
def best_first_search(datasets_file, api, args, common_options,
staleness=None, penalty=None, objective_name=None,
resume=False):
"""Selecting the fields to be used in the model construction
"""
counter = 0
loop_counter = 0
features_file = os.path.normpath(os.path.join(args.output_dir,
FEATURES_LOG))
with open(features_file, 'w', 0) as features_handler:
features_writer = csv.writer(features_handler, lineterminator="\n")
features_writer.writerow([
"step", "state", "score", "metric_value", "best_score"])
features_handler.flush()
if staleness is None:
staleness = DEFAULT_STALENESS
if penalty is None:
penalty = DEFAULT_PENALTY
# retrieving the first dataset in the file
try:
with open(datasets_file) as datasets_handler:
dataset_id = datasets_handler.readline().strip()
except IOError, exc:
sys.exit("Could not read the generated datasets file: %s" %
str(exc))
dataset = api.check_resource(dataset_id, api.get_dataset)
# initial feature set
fields = Fields(dataset)
excluded_features = ([] if args.exclude_features is None else
args.exclude_features.split(
args.args_separator))
excluded_ids = [fields.field_id(feature) for
feature in excluded_features]
objective_id = fields.field_id(objective_name)
field_ids = [field_id for field_id in fields.preferred_fields()
if field_id != objective_id and
not field_id in excluded_ids]
initial_state = [False for field_id in field_ids]
open_list = [(initial_state, - float('inf'), -float('inf'))]
closed_list = []
best_state, best_score, best_metric_value = open_list[0]
best_unchanged_count = 0
metric = args.maximize
while best_unchanged_count < staleness and open_list:
loop_counter += 1
features_set = find_max_state(open_list)
state, score, metric_value = features_set
features_writer.writerow([
loop_counter, [int(in_set) for in_set in state],
score, metric_value, best_score])
features_handler.flush()
state_fields = [fields.field_name(field_ids[index])
for (index, in_set) in enumerate(state) if in_set]
closed_list.append(features_set)
open_list.remove(features_set)
if (score - EPSILON) > best_score:
best_state, best_score, best_metric_value = features_set
best_unchanged_count = 0
if state_fields:
message = 'New best state: %s\n' % (state_fields)
u.log_message(message, log_file=session_file,
console=args.verbosity)
if metric in PERCENT_EVAL_METRICS:
message = '%s = %0.2f%% (score = %s)\n' % (
metric.capitalize(), metric_value * 100, score)
else:
message = '%s = %f (score = %s)\n' % (
metric.capitalize(),metric_value, score)
u.log_message(message, log_file=session_file,
console=args.verbosity)
else:
best_unchanged_count += 1
children = expand_state(state)
for child in children:
if (child not in [state for state, _, _ in open_list] and
child not in [state for state, _, _ in closed_list]):
input_fields = [fields.field_name(field_id)
for (i, field_id)
in enumerate(field_ids) if child[i]]
# create models and evaluation with input_fields
args.model_fields = args.args_separator.join(input_fields)
counter += 1
(score,
metric_value,
metric,
resume) = kfold_evaluate(datasets_file,
args, counter, common_options,
penalty=penalty, resume=resume,
metric=metric)
open_list.append((child, score, metric_value))
best_features = [fields.field_name(field_ids[i]) for (i, score)
in enumerate(best_state) if score]
message = (u'The best feature subset is: %s \n'
% u", ".join(best_features))
u.log_message(message, log_file=session_file, console=1)
if metric in PERCENT_EVAL_METRICS:
message = (u'%s = %0.2f%%\n' % (metric.capitalize(),
#.........这里部分代码省略.........
示例10: open
# 需要导入模块: from bigml.fields import Fields [as 别名]
# 或者: from bigml.fields.Fields import field_id [as 别名]
"""
counter = 0
if staleness is None:
staleness = DEFAULT_STALENESS
if penalty is None:
penalty = DEFAULT_PENALTY
# retrieving the first dataset in the file
try:
with open(datasets_file) as datasets_handler:
dataset_id = datasets_handler.readline().strip()
except IOError, exc:
sys.exit("Could not read the generated datasets file: %s" % str(exc))
dataset = api.check_resource(dataset_id, api.get_dataset)
# initial feature set
fields = Fields(dataset)
objective_id = fields.field_id(objective_column)
field_ids = [field_id for field_id in fields.preferred_fields()
if field_id != objective_id]
initial_state = [False for field_id in field_ids]
open_list = [(initial_state,0)]
closed_list = []
best_score = -1
best_unchanged_count = 0
metric = args.maximize
while best_unchanged_count < staleness and open_list:
(state, score) = find_max_state(open_list)
state_fields = [fields.field_name(field_ids[i])
for (i, val) in enumerate(state) if val]
closed_list.append((state, score))
open_list.remove((state, score))
if (score - EPSILON) > best_score: