本文整理汇总了Python中bigml.fields.Fields.field_name方法的典型用法代码示例。如果您正苦于以下问题:Python Fields.field_name方法的具体用法?Python Fields.field_name怎么用?Python Fields.field_name使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类bigml.fields.Fields
的用法示例。
在下文中一共展示了Fields.field_name方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_input_fields
# 需要导入模块: from bigml.fields import Fields [as 别名]
# 或者: from bigml.fields.Fields import field_name [as 别名]
def get_input_fields(resource, referrer=None):
"""New list of input fields
"""
if referrer is None:
referrer = {}
input_fields_ids = resource.get('input_fields', [])
if referrer:
referrer_input_fields = [[]]
# compare fields by name
resource_fields = Fields(
{'resource': resource['resource'], 'object': resource})
referrer_fields = Fields(
{'resource': referrer['resource'], 'object': referrer})
input_fields = [resource_fields.field_name(field_id) for field_id in
input_fields_ids]
input_fields = sorted(input_fields)
referrer_type = get_resource_type(referrer)
if referrer_type == 'dataset':
referrer_fields = Fields(referrer_fields.preferred_fields())
referrer_fields_names = sorted( \
[field['name'] for _, field in referrer_fields.fields.items()])
else:
referrer_fields_names = sorted( \
referrer_fields.fields_by_name.keys())
# check referrer input fields to see if they are equal
referrer_input_fields.append(referrer_fields_names)
# check whether the resource has an objective field not included in
# the input fields list
resource_type = get_resource_type(resource)
if resource_type == 'model':
objective_id = resource.get('objective_field')
try:
objective_id = objective_id.get('id')
except AttributeError:
pass
referrer_objective = resource_fields.field_name(
objective_id)
referrer_input_fields.append([name for name in
referrer_fields_names
if name != referrer_objective])
if input_fields in referrer_input_fields:
return []
return referrer_fields.fields.keys()
示例2: create_kfold_datasets_file
# 需要导入模块: from bigml.fields import Fields [as 别名]
# 或者: from bigml.fields.Fields import field_name [as 别名]
def create_kfold_datasets_file(args, api, common_options, resume=False):
"""Create the kfold dataset resources and store their ids in a file
one per line
"""
message = ('Creating the kfold datasets............\n')
u.log_message(message, log_file=session_file, console=args.verbosity)
if args.output_dir is None:
args.output_dir = a.NOW
# retrieve dataset
dataset_id = bigml.api.get_dataset_id(args.dataset)
if dataset_id:
dataset = api.check_resource(dataset_id)
try:
args.objective_field = int(args.objective_field)
except (TypeError, ValueError):
pass
# if the user provided no objective field, try to use the one in the
# dataset
if args.objective_field is None:
try:
args.objective_field = dataset['object'][
'objective_field']['column_number']
except KeyError:
pass
# check that kfold_field is unique
fields = Fields(dataset, objective_field=args.objective_field,
objective_field_present=True)
try:
objective_id = fields.field_id(fields.objective_field)
objective_name = fields.field_name(objective_id)
except ValueError, exc:
sys.exit(exc)
kfold_field_name = avoid_duplicates(DEFAULT_KFOLD_FIELD, fields)
# create jsons to generate partial datasets
selecting_file_list, resume = create_kfold_json(args, kfold_field_name,
objective_id,
resume=resume)
# generate test datasets
datasets_file, resume = create_kfold_datasets(dataset_id, args,
selecting_file_list,
objective_name,
common_options,
resume=resume)
return datasets_file, objective_name, resume
示例3: create_kfold_datasets_file
# 需要导入模块: from bigml.fields import Fields [as 别名]
# 或者: from bigml.fields.Fields import field_name [as 别名]
def create_kfold_datasets_file(args, api, common_options, resume=False):
"""Create the kfold dataset resources and store their ids in a file
one per line
"""
message = ('Creating the kfold datasets............\n')
u.log_message(message, log_file=session_file, console=args.verbosity)
if args.output_dir is None:
args.output_dir = a.NOW
csv_properties = {}
fields = None
dataset = None
datasets = []
if args.dataset_file:
# dataset is retrieved from the contents of the given local JSON file
model_dataset, csv_properties, fields = u.read_local_resource(
args.dataset_file,
csv_properties=csv_properties)
if not args.datasets:
datasets = [model_dataset]
dataset = model_dataset
else:
datasets = u.read_datasets(args.datasets)
dataset_id = dataset['resource']
elif args.dataset:
dataset_id = bigml.api.get_dataset_id(args.dataset)
datasets = [dataset_id]
elif args.dataset_ids:
datasets = args.dataset_ids
dataset_id = datasets[0]
if dataset_id:
if not dataset:
dataset = api.check_resource(dataset_id,
query_string=ALL_FIELDS_QS)
try:
args.objective_field = int(args.objective_field)
except (TypeError, ValueError):
pass
# if the user provided no objective field, try to use the one in the
# dataset
if args.objective_field is None:
try:
args.objective_field = dataset['object'][
'objective_field']['column_number']
except KeyError:
pass
# check that kfold_field is unique
fields = Fields(dataset, objective_field=args.objective_field,
objective_field_present=True)
if args.random_fields:
default_candidates_limits(args, fields)
try:
objective_id = fields.field_id(fields.objective_field)
objective_name = fields.field_name(objective_id)
except ValueError, exc:
sys.exit(exc)
kfold_field_name = avoid_duplicates(DEFAULT_KFOLD_FIELD, fields)
# create jsons to generate partial datasets
selecting_file_list, resume = create_kfold_json(args, kfold_field_name,
objective_id,
resume=resume)
# generate test datasets
datasets_file, resume = create_kfold_datasets(dataset_id, args,
selecting_file_list,
common_options,
resume=resume)
return datasets_file, objective_name, resume
示例4: Fields
# 需要导入模块: from bigml.fields import Fields [as 别名]
# 或者: from bigml.fields.Fields import field_name [as 别名]
# initial feature set
fields = Fields(dataset)
excluded_features = ([] if args.exclude_features is None else
args.exclude_features.split(
args.args_separator))
try:
excluded_ids = [fields.field_id(feature) for
feature in excluded_features]
objective_id = fields.field_id(objective_name)
except ValueError, exc:
sys.exit(exc)
field_ids = [field_id for field_id in fields.preferred_fields()
if field_id != objective_id and
not field_id in excluded_ids]
# headers are extended with a column per field
fields_names = [fields.field_name(field_id) for field_id in field_ids]
features_header.extend(fields_names)
features_writer.writerow(features_header)
initial_state = [False for field_id in field_ids]
open_list = [(initial_state, - float('inf'), -float('inf'), 0)]
closed_list = []
best_state, best_score, best_metric_value, best_counter = open_list[0]
best_unchanged_count = 0
metric = args.optimize
while best_unchanged_count < staleness and open_list:
loop_counter += 1
features_set = find_max_state(open_list)
state, score, metric_value, folder_counter = features_set
if loop_counter > 1:
csv_results = [loop_counter - 1, [int(in_set) for in_set in state],
score, metric_value, best_score]
示例5: compute_output
# 需要导入模块: from bigml.fields import Fields [as 别名]
# 或者: from bigml.fields.Fields import field_name [as 别名]
#.........这里部分代码省略.........
distribution = pd.get_categories_distribution(dataset,
args.objective_id_)
if distribution and len(distribution) > args.max_categories:
categories = [element[0] for element in distribution]
other_label = pd.create_other_label(categories, other_label)
datasets, resume = pd.create_categories_datasets(
dataset, distribution, fields, args,
api, resume, session_file=session_file, path=path, log=log,
other_label=other_label)
else:
sys.exit("The provided objective field is not categorical nor "
"a full terms only text field. "
"Only these fields can be used with"
" --max-categories")
# If multi-dataset flag is on, generate a new dataset from the given
# list of datasets
if args.multi_dataset:
dataset, resume = pd.create_new_dataset(
datasets, api, args, resume, fields=fields,
session_file=session_file, path=path, log=log)
datasets = [dataset]
# Check if the dataset has a generators file associated with it, and
# generate a new dataset with the specified field structure. Also
# if the --to-dataset flag is used to clone or sample the original dataset
if args.new_fields or (args.sample_rate != 1 and args.no_model) or \
(args.lisp_filter or args.json_filter) and not has_source(args):
if fields is None:
if isinstance(dataset, basestring):
dataset = u.check_resource(dataset, api=api)
fields = Fields(dataset, csv_properties)
args.objective_id_ = get_objective_id(args, fields)
args.objective_name_ = fields.field_name(args.objective_id_)
dataset, resume = pd.create_new_dataset(
dataset, api, args, resume, fields=fields,
session_file=session_file, path=path, log=log)
datasets[0] = dataset
# rebuild fields structure for new ids and fields
csv_properties.update({'objective_field': args.objective_name_,
'objective_field_present': True})
fields = pd.get_fields_structure(dataset, csv_properties)
args.objective_id_ = get_objective_id(args, fields)
if args.multi_label and dataset and multi_label_data is None:
multi_label_data = l.get_multi_label_data(dataset)
(args.objective_field,
labels,
all_labels,
multi_label_fields) = l.multi_label_sync(args.objective_field,
labels,
multi_label_data,
fields, multi_label_fields)
if dataset:
# retrieves max_categories data, if any
args.max_categories = get_metadata(dataset, 'max_categories',
args.max_categories)
other_label = get_metadata(dataset, 'other_label',
other_label)
if fields and args.export_fields:
fields.summary_csv(os.path.join(path, args.export_fields))
if args.model_file:
# model is retrieved from the contents of the given local JSON file
model, csv_properties, fields = u.read_local_resource(
args.model_file,
csv_properties=csv_properties)
示例6: find_max_state
# 需要导入模块: from bigml.fields import Fields [as 别名]
# 或者: from bigml.fields.Fields import field_name [as 别名]
args.args_separator))
excluded_ids = [fields.field_id(feature) for
feature in excluded_features]
objective_id = fields.field_id(objective_name)
field_ids = [field_id for field_id in fields.preferred_fields()
if field_id != objective_id and
not field_id in excluded_ids]
initial_state = [False for field_id in field_ids]
open_list = [(initial_state, 0)]
closed_list = []
best_score = -1
best_unchanged_count = 0
metric = args.maximize
while best_unchanged_count < staleness and open_list:
(state, score) = find_max_state(open_list)
state_fields = [fields.field_name(field_ids[i])
for (i, val) in enumerate(state) if val]
closed_list.append((state, score))
open_list.remove((state, score))
if (score - EPSILON) > best_score:
best_state = state
best_score = score
best_unchanged_count = 0
if state_fields:
message = 'New best state: %s\n' % (state_fields)
u.log_message(message, log_file=session_file,
console=args.verbosity)
if metric in PERCENT_EVAL_METRICS:
message = '%s = %0.2f%%\n' % (metric.capitalize(),
score * 100)
else:
示例7: best_first_search
# 需要导入模块: from bigml.fields import Fields [as 别名]
# 或者: from bigml.fields.Fields import field_name [as 别名]
def best_first_search(datasets_file, api, args, common_options,
staleness=None, penalty=None, objective_name=None,
resume=False):
"""Selecting the fields to be used in the model construction
"""
counter = 0
loop_counter = 0
features_file = os.path.normpath(os.path.join(args.output_dir,
FEATURES_LOG))
with open(features_file, 'w', 0) as features_handler:
features_writer = csv.writer(features_handler, lineterminator="\n")
features_writer.writerow([
"step", "state", "score", "metric_value", "best_score"])
features_handler.flush()
if staleness is None:
staleness = DEFAULT_STALENESS
if penalty is None:
penalty = DEFAULT_PENALTY
# retrieving the first dataset in the file
try:
with open(datasets_file) as datasets_handler:
dataset_id = datasets_handler.readline().strip()
except IOError, exc:
sys.exit("Could not read the generated datasets file: %s" %
str(exc))
dataset = api.check_resource(dataset_id, api.get_dataset)
# initial feature set
fields = Fields(dataset)
excluded_features = ([] if args.exclude_features is None else
args.exclude_features.split(
args.args_separator))
excluded_ids = [fields.field_id(feature) for
feature in excluded_features]
objective_id = fields.field_id(objective_name)
field_ids = [field_id for field_id in fields.preferred_fields()
if field_id != objective_id and
not field_id in excluded_ids]
initial_state = [False for field_id in field_ids]
open_list = [(initial_state, - float('inf'), -float('inf'))]
closed_list = []
best_state, best_score, best_metric_value = open_list[0]
best_unchanged_count = 0
metric = args.maximize
while best_unchanged_count < staleness and open_list:
loop_counter += 1
features_set = find_max_state(open_list)
state, score, metric_value = features_set
features_writer.writerow([
loop_counter, [int(in_set) for in_set in state],
score, metric_value, best_score])
features_handler.flush()
state_fields = [fields.field_name(field_ids[index])
for (index, in_set) in enumerate(state) if in_set]
closed_list.append(features_set)
open_list.remove(features_set)
if (score - EPSILON) > best_score:
best_state, best_score, best_metric_value = features_set
best_unchanged_count = 0
if state_fields:
message = 'New best state: %s\n' % (state_fields)
u.log_message(message, log_file=session_file,
console=args.verbosity)
if metric in PERCENT_EVAL_METRICS:
message = '%s = %0.2f%% (score = %s)\n' % (
metric.capitalize(), metric_value * 100, score)
else:
message = '%s = %f (score = %s)\n' % (
metric.capitalize(),metric_value, score)
u.log_message(message, log_file=session_file,
console=args.verbosity)
else:
best_unchanged_count += 1
children = expand_state(state)
for child in children:
if (child not in [state for state, _, _ in open_list] and
child not in [state for state, _, _ in closed_list]):
input_fields = [fields.field_name(field_id)
for (i, field_id)
in enumerate(field_ids) if child[i]]
# create models and evaluation with input_fields
args.model_fields = args.args_separator.join(input_fields)
counter += 1
(score,
metric_value,
metric,
resume) = kfold_evaluate(datasets_file,
args, counter, common_options,
penalty=penalty, resume=resume,
metric=metric)
open_list.append((child, score, metric_value))
best_features = [fields.field_name(field_ids[i]) for (i, score)
in enumerate(best_state) if score]
message = (u'The best feature subset is: %s \n'
% u", ".join(best_features))
u.log_message(message, log_file=session_file, console=1)
if metric in PERCENT_EVAL_METRICS:
message = (u'%s = %0.2f%%\n' % (metric.capitalize(),
#.........这里部分代码省略.........