当前位置: 首页>>代码示例>>Python>>正文


Python Domain.set_flow_algorithm方法代码示例

本文整理汇总了Python中anuga.shallow_water.shallow_water_domain.Domain.set_flow_algorithm方法的典型用法代码示例。如果您正苦于以下问题:Python Domain.set_flow_algorithm方法的具体用法?Python Domain.set_flow_algorithm怎么用?Python Domain.set_flow_algorithm使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在anuga.shallow_water.shallow_water_domain.Domain的用法示例。


在下文中一共展示了Domain.set_flow_algorithm方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_sww2pts_centroids_1_5

# 需要导入模块: from anuga.shallow_water.shallow_water_domain import Domain [as 别名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_flow_algorithm [as 别名]
    def test_sww2pts_centroids_1_5(self):
        """Test that sww information can be converted correctly to pts data at specified coordinates
        - in this case, the centroids.
        """

        import time, os
        from anuga.file.netcdf import NetCDFFile
        # Used for points that lie outside mesh
        NODATA_value = 1758323

        # Setup
        from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular

        # Create shallow water domain
        domain = Domain(*rectangular(2, 2))
        domain.set_flow_algorithm('1_5')

        B = Transmissive_boundary(domain)
        domain.set_boundary( {'left': B, 'right': B, 'top': B, 'bottom': B})

        domain.set_name('datatest_1_5')

        ptsfile = domain.get_name() + '_elevation.pts'
        swwfile = domain.get_name() + '.sww'

        domain.set_datadir('.')
        domain.format = 'sww'
        domain.set_quantity('elevation', lambda x,y: -x-y)

        domain.geo_reference = Geo_reference(56,308500,6189000)

        sww = SWW_file(domain)
        sww.store_connectivity()
        sww.store_timestep()

        #self.domain.tight_slope_limiters = 1
        domain.evolve_to_end(finaltime = 0.01)
        sww.store_timestep()

        # Check contents in NetCDF
        fid = NetCDFFile(sww.filename, netcdf_mode_r)

        # Get the variables
        x = fid.variables['x'][:]
        y = fid.variables['y'][:]
        elevation = fid.variables['elevation'][:]
        time = fid.variables['time'][:]
        stage = fid.variables['stage'][:]

        volumes = fid.variables['volumes'][:]


        # Invoke interpolation for vertex points       
        points = num.concatenate( (x[:,num.newaxis],y[:,num.newaxis]), axis=1 )
        points = num.ascontiguousarray(points)
        sww2pts(domain.get_name() + '.sww',
                quantity = 'elevation',
                data_points = points,
                NODATA_value = NODATA_value)
        ref_point_values = elevation
        point_values = Geospatial_data(ptsfile).get_attributes()
        #print 'P', point_values
        #print 'Ref', ref_point_values        
        assert num.allclose(point_values, ref_point_values)        



        # Invoke interpolation for centroids
        points = domain.get_centroid_coordinates()
        #print points
        sww2pts(domain.get_name() + '.sww',
                quantity = 'elevation',
                data_points = points,
                NODATA_value = NODATA_value)
        
        ref_point_values = [-0.5, -0.5, -1, -1, -1, -1, -1.5, -1.5]   #At centroids


        point_values = Geospatial_data(ptsfile).get_attributes()
        #print 'P', point_values
        #print 'Ref', ref_point_values        
        assert num.allclose(point_values, ref_point_values)        

        fid.close()

        #Cleanup
        os.remove(sww.filename)
        os.remove(ptsfile)
开发者ID:GeoscienceAustralia,项目名称:anuga_core,代码行数:90,代码来源:test_2pts.py

示例2: rectangular_cross

# 需要导入模块: from anuga.shallow_water.shallow_water_domain import Domain [as 别名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_flow_algorithm [as 别名]
width = 200.  #y-dir

dx = dy = 2.0          # Resolution: Length of subdivisions on both axes
#dx = dy = .5           # Resolution: Length of subdivisions on both axes
#dx = dy = .5           # Resolution: Length of subdivisions on both axes
#dx = dy = .1           # Resolution: Length of subdivisions on both axes

points, vertices, boundary = rectangular_cross(int(length/dx), int(width/dy),
                                                    len1=length, len2=width)
domain = Domain(points, vertices, boundary)   
domain.set_name('Test_WIDE_BRIDGE')                 # Output name
#domain.set_default_order(2)
#omain.H0 = 0.01
#domain.tight_slope_limiters = 1

domain.set_flow_algorithm('2_0')

print 'Size', len(domain)

#------------------------------------------------------------------------------
# Setup initial conditions
#------------------------------------------------------------------------------

def topography(x, y):
    """Set up a weir
    
    A culvert will connect either side
    """
    # General Slope of Topography
    z=10.0-x/100.0  # % Longitudinal Slope
    
开发者ID:MattAndersonPE,项目名称:anuga_core,代码行数:32,代码来源:run_wide_bridge.py

示例3: test_get_mesh_and_quantities_from_unique_vertices_DE0_sww_file

# 需要导入模块: from anuga.shallow_water.shallow_water_domain import Domain [as 别名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_flow_algorithm [as 别名]
    def test_get_mesh_and_quantities_from_unique_vertices_DE0_sww_file(self):
        """test_get_mesh_and_quantities_from_unique_vertices_sww_file(self):
        """     
        
        # Generate a test sww file with non trivial georeference
        
        import time, os

        # Setup
        #from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular

        # Create basic mesh (100m x 5m)
        width = 5
        length = 50
        t_end = 10
        points, vertices, boundary = rectangular(10, 1, length, width)

        # Create shallow water domain
        domain = Domain(points, vertices, boundary,
                        geo_reference = Geo_reference(56,308500,6189000))

        domain.set_name('test_get_mesh_and_quantities_from_unique_vertices_sww_file')
        swwfile = domain.get_name() + '.sww'
        domain.set_datadir('.')
        domain.set_flow_algorithm('DE0')
        domain.set_store_vertices_uniquely()

        Br = Reflective_boundary(domain)    # Side walls
        Bd = Dirichlet_boundary([1, 0, 0])  # inflow

        domain.set_boundary( {'left': Bd, 'right': Bd, 'top': Br, 'bottom': Br})

        for t in domain.evolve(yieldstep=1, finaltime = t_end):
            pass

        
        # Read it

        # Get mesh and quantities from sww file
        X = get_mesh_and_quantities_from_file(swwfile,
                                              quantities=['elevation',
                                                          'stage',
                                                          'xmomentum',
                                                          'ymomentum'], 
                                              verbose=False)
        mesh, quantities, time = X 

        #print quantities
        #print time

        dhash = domain.get_nodes()[:,0]*10+domain.get_nodes()[:,1]
        mhash = mesh.nodes[:,0]*10+mesh.nodes[:,1]        


        #print 'd_nodes',len(dhash)
        #print 'm_nodes',len(mhash)
        di = num.argsort(dhash)
        mi = num.argsort(mhash)
        minv = num.argsort(mi)
        dinv = num.argsort(di)

        #print 'd_tri',len(domain.get_triangles())
        #print 'm_tri',len(mesh.triangles)
        
        # Check that mesh has been recovered
        # triangle order should be ok
        assert num.allclose(mesh.nodes[mi,:],domain.get_nodes()[di,:])
        assert num.alltrue(minv[mesh.triangles] == dinv[domain.get_triangles()])


        # Check that time has been recovered
        assert num.allclose(time, range(t_end+1))

        z=domain.get_quantity('elevation').get_values(location='vertices').flatten()
        

        
        assert num.allclose(quantities['elevation'], z)

        for q in ['stage', 'xmomentum', 'ymomentum']:
            # Get quantity at last timestep
            q_ref=domain.get_quantity(q).get_values(location='vertices').flatten()

            #print q,quantities[q]
            q_sww=quantities[q][-1,:]
            
            msg = 'Quantity %s failed to be recovered' %q
            assert num.allclose(q_ref, q_sww, atol=1.0e-6), msg
开发者ID:GeoscienceAustralia,项目名称:anuga_core,代码行数:90,代码来源:test_sww.py

示例4: test_get_mesh_and_quantities_from_de0_sww_file

# 需要导入模块: from anuga.shallow_water.shallow_water_domain import Domain [as 别名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_flow_algorithm [as 别名]
    def test_get_mesh_and_quantities_from_de0_sww_file(self):
        """test_get_mesh_and_quantities_from_sww_file(self):
        """     
        
        # Generate a test sww file with non trivial georeference
        
        import time, os

        # Setup
        #from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular

        # Create basic mesh (100m x 5m)
        width = 5
        length = 50
        t_end = 10
        points, vertices, boundary = rectangular(length, width, 50, 5)

        # Create shallow water domain
        domain = Domain(points, vertices, boundary,
                        geo_reference = Geo_reference(56,308500,6189000))

        domain.set_name('test_get_mesh_and_quantities_from_sww_file')
        swwfile = domain.get_name() + '.sww'
        domain.set_datadir('.')
        domain.set_flow_algorithm('DE0')

        Br = Reflective_boundary(domain)    # Side walls
        Bd = Dirichlet_boundary([1, 0, 0])  # inflow

        domain.set_boundary( {'left': Bd, 'right': Bd, 'top': Br, 'bottom': Br})

        for t in domain.evolve(yieldstep=1, finaltime = t_end):
            pass

        
        # Read it

        # Get mesh and quantities from sww file
        X = get_mesh_and_quantities_from_file(swwfile,
                                              quantities=['elevation',
                                                          'stage',
                                                          'xmomentum',
                                                          'ymomentum'], 
                                              verbose=False)
        mesh, quantities, time = X
        

        
        # Check that mesh has been recovered
        assert num.alltrue(mesh.triangles == domain.get_triangles())
        assert num.allclose(mesh.nodes, domain.get_nodes())

        # Check that time has been recovered
        assert num.allclose(time, range(t_end+1))

        # Check that quantities have been recovered
        # (sww files use single precision)
        z=domain.get_quantity('elevation').get_values(location='unique vertices')
        assert num.allclose(quantities['elevation'], z)

        for q in ['stage', 'xmomentum', 'ymomentum']:
            # Get quantity at last timestep
            q_ref=domain.get_quantity(q).get_values(location='unique vertices')

            #print q,quantities[q]
            q_sww=quantities[q][-1,:]
            
            msg = 'Quantity %s failed to be recovered' %q
            assert num.allclose(q_ref, q_sww, atol=1.0e-2), msg
开发者ID:GeoscienceAustralia,项目名称:anuga_core,代码行数:71,代码来源:test_sww.py

示例5: test_get_maximum_inundation_1_5

# 需要导入模块: from anuga.shallow_water.shallow_water_domain import Domain [as 别名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_flow_algorithm [as 别名]
    def test_get_maximum_inundation_1_5(self):
        """Test that sww information can be converted correctly to maximum
        runup elevation and location (without and with georeferencing)

        This test creates a slope and a runup which is maximal (~11m) at around 10s
        and levels out to the boundary condition (1m) at about 30s.
        """

        import time, os
        from anuga.file.netcdf import NetCDFFile

        #Setup

        #from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular

        # Create basic mesh (100m x 100m)
        points, vertices, boundary = rectangular(20, 5, 100, 50)

        # Create shallow water domain
        domain = Domain(points, vertices, boundary)
        domain.set_flow_algorithm('1_5')
        domain.default_order = 2
        domain.set_minimum_storable_height(0.01)

        filename = 'runup_test_3'
        domain.set_name(filename)
        swwfile = domain.get_name() + '.sww'

        domain.set_datadir('.')
        domain.format = 'sww'
        domain.smooth = True

        # FIXME (Ole): Backwards compatibility
        # Look at sww file and see what happens when
        # domain.tight_slope_limiters = 1
        domain.tight_slope_limiters = 0
        domain.use_centroid_velocities = 0 # Backwards compatibility (7/5/8)        
        
        Br = Reflective_boundary(domain)
        Bd = Dirichlet_boundary([1.0,0,0])


        #---------- First run without geo referencing
        
        domain.set_quantity('elevation', lambda x,y: -0.2*x + 14) # Slope
        domain.set_quantity('stage', -6)
        domain.set_boundary( {'left': Br, 'right': Bd, 'top': Br, 'bottom': Br})

        for t in domain.evolve(yieldstep=1, finaltime = 50):
            pass


        # Check maximal runup
        runup = get_maximum_inundation_elevation(swwfile)
        location = get_maximum_inundation_location(swwfile)
        #print 'Runup, location', runup, location
        assert num.allclose(runup, 6.33333333) or \
               num.allclose(runup, 6) or \
               num.allclose(runup, 12) # old limiters
        assert num.allclose(location[0], 38.33333333) or \
               num.allclose(location[0], 40.0) or \
               num.allclose(location[0], 10)

        # Check final runup
        runup = get_maximum_inundation_elevation(swwfile, time_interval=[45,50])
        location = get_maximum_inundation_location(swwfile, time_interval=[45,50])
        #print 'Runup, location:',runup, location

 
        assert num.allclose(runup, 1.666666666)
        assert num.allclose(location[0], 61.666666)

        # Check runup restricted to a polygon
        p = [[50,1], [99,1], [99,49], [50,49]]
        runup = get_maximum_inundation_elevation(swwfile, polygon=p)
        location = get_maximum_inundation_location(swwfile, polygon=p)
        #print runup, location

        assert num.allclose(runup, 3.6666666)
        assert num.allclose(location[0], 51.6666666)                

        # Check that mimimum_storable_height works
        fid = NetCDFFile(swwfile, netcdf_mode_r) # Open existing file
        
        stage = fid.variables['stage'][:]
        z = fid.variables['elevation'][:]
        xmomentum = fid.variables['xmomentum'][:]
        ymomentum = fid.variables['ymomentum'][:]        

        
        
        for i in range(stage.shape[0]):
            h = stage[i]-z # depth vector at time step i
            
            # Check every node location
            for j in range(stage.shape[1]):
                # Depth being either exactly zero implies
                # momentum being zero.
                # Or else depth must be greater than or equal to
                # the minimal storable height
#.........这里部分代码省略.........
开发者ID:MattAndersonPE,项目名称:anuga_core,代码行数:103,代码来源:test_sww_interrogate.py

示例6: setUp

# 需要导入模块: from anuga.shallow_water.shallow_water_domain import Domain [as 别名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_flow_algorithm [as 别名]
    def setUp(self):
        import time
        #from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular
        
        self.verbose = Test_Data_Manager.verbose
        # Create basic mesh
        points, vertices, boundary = rectangular(2, 2)

        # Create shallow water domain
        domain = Domain(points, vertices, boundary)
        domain.set_flow_algorithm('1_5')
        domain.default_order = 2

        # Set some field values
        domain.set_quantity('elevation', lambda x,y: -x)
        domain.set_quantity('friction', 0.03)


        ######################
        # Boundary conditions
        B = Transmissive_boundary(domain)
        domain.set_boundary( {'left': B, 'right': B, 'top': B, 'bottom': B})


        ######################
        #Initial condition - with jumps
        bed = domain.quantities['elevation'].vertex_values
        stage = num.zeros(bed.shape, num.float)

        h = 0.3
        for i in range(stage.shape[0]):
            if i % 2 == 0:
                stage[i,:] = bed[i,:] + h
            else:
                stage[i,:] = bed[i,:]

        domain.set_quantity('stage', stage)


        domain.distribute_to_vertices_and_edges()               
        self.initial_stage = copy.copy(domain.quantities['stage'].vertex_values)


        self.domain = domain

        C = domain.get_vertex_coordinates()
        self.X = C[:,0:6:2].copy()
        self.Y = C[:,1:6:2].copy()

        self.F = bed

        #Write A testfile (not realistic. Values aren't realistic)
        self.test_MOST_file = 'most_small'

        longitudes = [150.66667, 150.83334, 151., 151.16667]
        latitudes = [-34.5, -34.33333, -34.16667, -34]

        long_name = 'LON'
        lat_name = 'LAT'

        nx = 4
        ny = 4
        six = 6


        for ext in ['_ha.nc', '_ua.nc', '_va.nc', '_e.nc']:
            fid = NetCDFFile(self.test_MOST_file + ext, netcdf_mode_w)

            fid.createDimension(long_name,nx)
            fid.createVariable(long_name,netcdf_float,(long_name,))
            fid.variables[long_name].point_spacing='uneven'
            fid.variables[long_name].units='degrees_east'
            fid.variables[long_name][:] = longitudes

            fid.createDimension(lat_name,ny)
            fid.createVariable(lat_name,netcdf_float,(lat_name,))
            fid.variables[lat_name].point_spacing='uneven'
            fid.variables[lat_name].units='degrees_north'
            fid.variables[lat_name][:] = latitudes

            fid.createDimension('TIME',six)
            fid.createVariable('TIME',netcdf_float,('TIME',))
            fid.variables['TIME'].point_spacing='uneven'
            fid.variables['TIME'].units='seconds'
            fid.variables['TIME'][:] = [0.0, 0.1, 0.6, 1.1, 1.6, 2.1]


            name = ext[1:3].upper()
            if name == 'E.': name = 'ELEVATION'
            fid.createVariable(name,netcdf_float,('TIME', lat_name, long_name))
            fid.variables[name].units='CENTIMETERS'
            fid.variables[name].missing_value=-1.e+034

            fid.variables[name][:] = [[[0.3400644, 0, -46.63519, -6.50198],
                                              [-0.1214216, 0, 0, 0],
                                              [0, 0, 0, 0],
                                              [0, 0, 0, 0]],
                                             [[0.3400644, 2.291054e-005, -23.33335, -6.50198],
                                              [-0.1213987, 4.581959e-005, -1.594838e-007, 1.421085e-012],
                                              [2.291054e-005, 4.582107e-005, 4.581715e-005, 1.854517e-009],
#.........这里部分代码省略.........
开发者ID:MattAndersonPE,项目名称:anuga_core,代码行数:103,代码来源:test_data_manager.py


注:本文中的anuga.shallow_water.shallow_water_domain.Domain.set_flow_algorithm方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。