本文整理汇总了Python中anuga.shallow_water.shallow_water_domain.Domain.default_order方法的典型用法代码示例。如果您正苦于以下问题:Python Domain.default_order方法的具体用法?Python Domain.default_order怎么用?Python Domain.default_order使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类anuga.shallow_water.shallow_water_domain.Domain
的用法示例。
在下文中一共展示了Domain.default_order方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_sww2domain1
# 需要导入模块: from anuga.shallow_water.shallow_water_domain import Domain [as 别名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import default_order [as 别名]
def test_sww2domain1(self):
################################################
#Create a test domain, and evolve and save it.
################################################
#from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular
#Create basic mesh
yiel=0.01
points, vertices, boundary = rectangular(10,10)
#print "=============== boundary rect ======================="
#print boundary
#Create shallow water domain
domain = Domain(points, vertices, boundary)
domain.geo_reference = Geo_reference(56,11,11)
domain.smooth = False
domain.store = True
domain.set_name('bedslope')
domain.default_order=2
#Bed-slope and friction
domain.set_quantity('elevation', lambda x,y: -x/3)
domain.set_quantity('friction', 0.1)
# Boundary conditions
from math import sin, pi
Br = Reflective_boundary(domain)
Bt = Transmissive_boundary(domain)
Bd = Dirichlet_boundary([0.2,0.,0.])
Bw = Time_boundary(domain=domain,function=lambda t: [(0.1*sin(t*2*pi)), 0.0, 0.0])
#domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br})
domain.set_boundary({'left': Bd, 'right': Bd, 'top': Bd, 'bottom': Bd})
domain.quantities_to_be_stored['xmomentum'] = 2
domain.quantities_to_be_stored['ymomentum'] = 2
#Initial condition
h = 0.05
elevation = domain.quantities['elevation'].vertex_values
domain.set_quantity('stage', elevation + h)
domain.check_integrity()
#Evolution
#domain.tight_slope_limiters = 1
for t in domain.evolve(yieldstep = yiel, finaltime = 0.05):
#domain.write_time()
pass
#print boundary
filename = domain.datadir + os.sep + domain.get_name() + '.sww'
domain2 = load_sww_as_domain(filename, None, fail_if_NaN=False,
verbose=self.verbose)
# Unfortunately we loss the boundaries top, bottom, left and right,
# they are now all lumped into "exterior"
#print "=============== boundary domain2 ======================="
#print domain2.boundary
#print domain2.get_boundary_tags()
#points, vertices, boundary = rectangular(15,15)
#domain2.boundary = boundary
###################
##NOW TEST IT!!!
###################
os.remove(filename)
bits = ['vertex_coordinates']
for quantity in ['stage']:
bits.append('get_quantity("%s").get_integral()' % quantity)
bits.append('get_quantity("%s").get_values()' % quantity)
for bit in bits:
#print 'testing that domain.'+bit+' has been restored'
#print bit
#print 'done'
#print eval('domain.'+bit)
#print eval('domain2.'+bit)
assert num.allclose(eval('domain.'+bit),eval('domain2.'+bit))
######################################
#Now evolve them both, just to be sure
######################################x
from time import sleep
final = .1
domain.set_quantity('friction', 0.1)
domain.store = False
domain.set_boundary({'exterior': Bd, 'left' : Bd, 'right': Bd, 'top': Bd, 'bottom': Bd})
for t in domain.evolve(yieldstep = yiel, finaltime = final):
#domain.write_time()
pass
#.........这里部分代码省略.........
示例2: test_get_flow_through_cross_section_stored_uniquely
# 需要导入模块: from anuga.shallow_water.shallow_water_domain import Domain [as 别名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import default_order [as 别名]
def test_get_flow_through_cross_section_stored_uniquely(self):
"""test_get_flow_through_cross_section_stored_uniquely(self):
Test that the total flow through a cross section can be
correctly obtained from an sww file.
This test creates a flat bed with a known flow through it and tests
that the function correctly returns the expected flow.
The specifics are
u = 2 m/s
h = 1 m
w = 3 m (width of channel)
q = u*h*w = 6 m^3/s
"""
import time, os
from anuga.file.netcdf import NetCDFFile
# Setup
#from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular
# Create basic mesh (20m x 3m)
width = 3
length = 20
t_end = 3
points, vertices, boundary = rectangular(length, width,
length, width)
# Create shallow water domain
domain = Domain(points, vertices, boundary)
domain.default_order = 2
domain.set_minimum_storable_height(0.01)
domain.set_name('flowtest_uniquely')
swwfile = domain.get_name() + '.sww'
domain.set_store_vertices_uniquely()
domain.set_datadir('.')
domain.format = 'sww'
domain.smooth = True
h = 1.0
u = 2.0
uh = u*h
Br = Reflective_boundary(domain) # Side walls
Bd = Dirichlet_boundary([h, uh, 0]) # 2 m/s across the 3 m inlet:
domain.set_quantity('elevation', 0.0)
domain.set_quantity('stage', h)
domain.set_quantity('xmomentum', uh)
domain.set_boundary( {'left': Bd, 'right': Bd, 'top': Br, 'bottom': Br})
for t in domain.evolve(yieldstep=1, finaltime = t_end):
pass
# Check that momentum is as it should be in the interior
I = [[0, width/2.],
[length/2., width/2.],
[length, width/2.]]
f = file_function(swwfile,
quantities=['stage', 'xmomentum', 'ymomentum'],
interpolation_points=I,
verbose=False)
for t in range(t_end+1):
for i in range(3):
assert num.allclose(f(t, i), [1, 2, 0], atol=1.0e-6)
# Check flows through the middle
for i in range(5):
x = length/2. + i*0.23674563 # Arbitrary
cross_section = [[x, 0], [x, width]]
time, Q = get_flow_through_cross_section(swwfile,
cross_section,
verbose=False)
assert num.allclose(Q, uh*width)
# Try the same with partial lines
x = length/2.
for i in range(5):
start_point = [length/2., i*width/5.]
#print start_point
cross_section = [start_point, [length/2., width]]
time, Q = get_flow_through_cross_section(swwfile,
cross_section,
verbose=False)
#.........这里部分代码省略.........
示例3: test_get_energy_through_cross_section
# 需要导入模块: from anuga.shallow_water.shallow_water_domain import Domain [as 别名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import default_order [as 别名]
def test_get_energy_through_cross_section(self):
"""test_get_energy_through_cross_section(self):
Test that the specific and total energy through a cross section can be
correctly obtained from an sww file.
This test creates a flat bed with a known flow through it and tests
that the function correctly returns the expected energies.
The specifics are
u = 2 m/s
h = 1 m
w = 3 m (width of channel)
q = u*h*w = 6 m^3/s
Es = h + 0.5*v*v/g # Specific energy head [m]
Et = w + 0.5*v*v/g # Total energy head [m]
This test uses georeferencing
"""
import time, os
from anuga.file.netcdf import NetCDFFile
# Setup
#from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular
# Create basic mesh (20m x 3m)
width = 3
length = 20
t_end = 1
points, vertices, boundary = rectangular(length, width,
length, width)
# Create shallow water domain
domain = Domain(points, vertices, boundary,
geo_reference = Geo_reference(56,308500,6189000))
domain.default_order = 2
domain.set_minimum_storable_height(0.01)
domain.set_name('flowtest')
swwfile = domain.get_name() + '.sww'
domain.set_datadir('.')
domain.format = 'sww'
domain.smooth = True
e = -1.0
w = 1.0
h = w-e
u = 2.0
uh = u*h
Br = Reflective_boundary(domain) # Side walls
Bd = Dirichlet_boundary([w, uh, 0]) # 2 m/s across the 3 m inlet:
domain.set_quantity('elevation', e)
domain.set_quantity('stage', w)
domain.set_quantity('xmomentum', uh)
domain.set_boundary( {'left': Bd, 'right': Bd, 'top': Br, 'bottom': Br})
for t in domain.evolve(yieldstep=1, finaltime = t_end):
pass
# Check that momentum is as it should be in the interior
I = [[0, width/2.],
[length/2., width/2.],
[length, width/2.]]
I = domain.geo_reference.get_absolute(I)
f = file_function(swwfile,
quantities=['stage', 'xmomentum', 'ymomentum'],
interpolation_points=I,
verbose=False)
for t in range(t_end+1):
for i in range(3):
#print i, t, f(t, i)
assert num.allclose(f(t, i), [w, uh, 0], atol=1.0e-6)
# Check energies through the middle
for i in range(5):
x = length/2. + i*0.23674563 # Arbitrary
cross_section = [[x, 0], [x, width]]
cross_section = domain.geo_reference.get_absolute(cross_section)
time, Es = get_energy_through_cross_section(swwfile,
cross_section,
kind='specific',
verbose=False)
assert num.allclose(Es, h + 0.5*u*u/g)
time, Et = get_energy_through_cross_section(swwfile,
#.........这里部分代码省略.........
示例4: test_get_maximum_inundation_de0
# 需要导入模块: from anuga.shallow_water.shallow_water_domain import Domain [as 别名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import default_order [as 别名]
def test_get_maximum_inundation_de0(self):
"""Test that sww information can be converted correctly to maximum
runup elevation and location (without and with georeferencing)
This test creates a slope and a runup which is maximal (~11m) at around 10s
and levels out to the boundary condition (1m) at about 30s.
"""
import time, os
from anuga.file.netcdf import NetCDFFile
#Setup
#from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular
# Create basic mesh (100m x 100m)
points, vertices, boundary = rectangular(20, 5, 100, 50)
# Create shallow water domain
domain = Domain(points, vertices, boundary)
domain.default_order = 2
domain.set_minimum_storable_height(0.01)
filename = 'runup_test_3'
domain.set_name(filename)
swwfile = domain.get_name() + '.sww'
domain.set_datadir('.')
domain.format = 'sww'
domain.smooth = True
# FIXME (Ole): Backwards compatibility
# Look at sww file and see what happens when
# domain.tight_slope_limiters = 1
domain.tight_slope_limiters = 0
domain.use_centroid_velocities = 0 # Backwards compatibility (7/5/8)
Br = Reflective_boundary(domain)
Bd = Dirichlet_boundary([1.0,0,0])
#---------- First run without geo referencing
domain.set_quantity('elevation', lambda x,y: -0.2*x + 14) # Slope
domain.set_quantity('stage', -6)
domain.set_boundary( {'left': Br, 'right': Bd, 'top': Br, 'bottom': Br})
for t in domain.evolve(yieldstep=1, finaltime = 50):
pass
# Check maximal runup
runup = get_maximum_inundation_elevation(swwfile)
location = get_maximum_inundation_location(swwfile)
#print 'Runup, location', runup, location
assert num.allclose(runup, 4.66666666667)
assert num.allclose(location[0], 46.666668)
# Check final runup
runup = get_maximum_inundation_elevation(swwfile, time_interval=[45,50])
location = get_maximum_inundation_location(swwfile, time_interval=[45,50])
#print 'Runup, location:',runup, location
assert num.allclose(runup, 3.81481488546)
assert num.allclose(location[0], 51.666668)
# Check runup restricted to a polygon
p = [[50,1], [99,1], [99,49], [50,49]]
runup = get_maximum_inundation_elevation(swwfile, polygon=p)
location = get_maximum_inundation_location(swwfile, polygon=p)
#print runup, location
assert num.allclose(runup, 3.81481488546)
assert num.allclose(location[0], 51.6666666)
# Check that mimimum_storable_height works
fid = NetCDFFile(swwfile, netcdf_mode_r) # Open existing file
stage = fid.variables['stage_c'][:]
z = fid.variables['elevation_c'][:]
xmomentum = fid.variables['xmomentum_c'][:]
ymomentum = fid.variables['ymomentum_c'][:]
for i in range(stage.shape[0]):
h = stage[i]-z # depth vector at time step i
# Check every node location
for j in range(stage.shape[1]):
# Depth being either exactly zero implies
# momentum being zero.
# Or else depth must be greater than or equal to
# the minimal storable height
if h[j] == 0.0:
assert xmomentum[i,j] == 0.0
assert ymomentum[i,j] == 0.0
else:
assert h[j] >= 0.0
fid.close()
#.........这里部分代码省略.........
示例5: setUp
# 需要导入模块: from anuga.shallow_water.shallow_water_domain import Domain [as 别名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import default_order [as 别名]
def setUp(self):
# print "****set up****"
# Create an sww file
# Set up an sww that has a geo ref.
# have it cover an area in Australia. 'gong maybe
# Don't have many triangles though!
# Site Name: GDA-MGA: (UTM with GRS80 ellipsoid)
# Zone: 56
# Easting: 222908.705 Northing: 6233785.284
# Latitude: -34 0 ' 0.00000 '' Longitude: 150 0 ' 0.00000 ''
# Grid Convergence: -1 40 ' 43.13 '' Point Scale: 1.00054660
# geo-ref
# Zone: 56
# Easting: 220000 Northing: 6230000
# have a big area covered.
mesh_file = tempfile.mktemp(".tsh")
points_lat_long = [[-33, 152], [-35, 152], [-35, 150], [-33, 150]]
spat = Geospatial_data(data_points=points_lat_long, points_are_lats_longs=True)
points_ab = spat.get_data_points(absolute=True)
geo = Geo_reference(56, 400000, 6000000)
spat.set_geo_reference(geo)
m = Mesh()
m.add_vertices(spat)
m.auto_segment()
m.generate_mesh(verbose=False)
m.export_mesh_file(mesh_file)
# Create shallow water domain
domain = Domain(mesh_file)
os.remove(mesh_file)
domain.default_order = 2
# Set some field values
# domain.set_quantity('stage', 1.0)
domain.set_quantity("elevation", -0.5)
domain.set_quantity("friction", 0.03)
######################
# Boundary conditions
B = Transmissive_boundary(domain)
domain.set_boundary({"exterior": B})
######################
# Initial condition - with jumps
bed = domain.quantities["elevation"].vertex_values
stage = num.zeros(bed.shape, num.float)
h = 0.3
for i in range(stage.shape[0]):
if i % 2 == 0:
stage[i, :] = bed[i, :] + h
else:
stage[i, :] = bed[i, :]
domain.set_quantity("stage", stage)
domain.set_quantity("xmomentum", stage * 22.0)
domain.set_quantity("ymomentum", stage * 55.0)
domain.distribute_to_vertices_and_edges()
self.domain = domain
C = domain.get_vertex_coordinates()
self.X = C[:, 0:6:2].copy()
self.Y = C[:, 1:6:2].copy()
self.F = bed
# sww_file = tempfile.mktemp("")
self.domain.set_name("tid_P0")
self.domain.format = "sww"
self.domain.smooth = True
self.domain.reduction = mean
sww = SWW_file(self.domain)
sww.store_connectivity()
sww.store_timestep()
self.domain.time = 2.0
sww.store_timestep()
self.sww = sww # so it can be deleted
# Create another sww file
mesh_file = tempfile.mktemp(".tsh")
points_lat_long = [[-35, 152], [-36, 152], [-36, 150], [-35, 150]]
spat = Geospatial_data(data_points=points_lat_long, points_are_lats_longs=True)
points_ab = spat.get_data_points(absolute=True)
geo = Geo_reference(56, 400000, 6000000)
spat.set_geo_reference(geo)
m = Mesh()
m.add_vertices(spat)
m.auto_segment()
m.generate_mesh(verbose=False)
m.export_mesh_file(mesh_file)
#.........这里部分代码省略.........
示例6: test_inundation_damage_list
# 需要导入模块: from anuga.shallow_water.shallow_water_domain import Domain [as 别名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import default_order [as 别名]
def test_inundation_damage_list(self):
# create mesh
mesh_file = tempfile.mktemp(".tsh")
points = [[0.0, 0.0], [6.0, 0.0], [6.0, 6.0], [0.0, 6.0]]
m = Mesh()
m.add_vertices(points)
m.auto_segment()
m.generate_mesh(verbose=False)
m.export_mesh_file(mesh_file)
# Create shallow water domain
domain = Domain(mesh_file)
os.remove(mesh_file)
domain.default_order = 2
# Set some field values
domain.set_quantity("elevation", elevation_function)
domain.set_quantity("friction", 0.03)
domain.set_quantity("xmomentum", 22.0)
domain.set_quantity("ymomentum", 55.0)
######################
# Boundary conditions
B = Transmissive_boundary(domain)
domain.set_boundary({"exterior": B})
# This call mangles the stage values.
domain.distribute_to_vertices_and_edges()
domain.set_quantity("stage", 0.3)
# sww_file = tempfile.mktemp("")
domain.set_name("datatest" + str(time.time()))
domain.format = "sww"
domain.smooth = True
domain.reduction = mean
sww = SWW_file(domain)
sww.store_connectivity()
sww.store_timestep()
domain.set_quantity("stage", -0.3)
domain.time = 2.0
sww.store_timestep()
# Create a csv file
csv_file = tempfile.mktemp(".csv")
fd = open(csv_file, "wb")
writer = csv.writer(fd)
writer.writerow(["x", "y", STR_VALUE_LABEL, CONT_VALUE_LABEL, "ROOF_TYPE", WALL_TYPE_LABEL, SHORE_DIST_LABEL])
writer.writerow([5.5, 0.5, "10", "130000", "Metal", "Timber", 20])
writer.writerow([4.5, 1.0, "150", "76000", "Metal", "Double Brick", 20])
writer.writerow([0.1, 1.5, "100", "76000", "Metal", "Brick Veneer", 300])
writer.writerow([6.1, 1.5, "100", "76000", "Metal", "Brick Veneer", 300])
fd.close()
extension = ".csv"
csv_fileII = tempfile.mktemp(extension)
fd = open(csv_fileII, "wb")
writer = csv.writer(fd)
writer.writerow(["x", "y", STR_VALUE_LABEL, CONT_VALUE_LABEL, "ROOF_TYPE", WALL_TYPE_LABEL, SHORE_DIST_LABEL])
writer.writerow([5.5, 0.5, "10", "130000", "Metal", "Timber", 20])
writer.writerow([4.5, 1.0, "150", "76000", "Metal", "Double Brick", 20])
writer.writerow([0.1, 1.5, "100", "76000", "Metal", "Brick Veneer", 300])
writer.writerow([6.1, 1.5, "100", "76000", "Metal", "Brick Veneer", 300])
fd.close()
sww_file = domain.get_name() + "." + domain.format
# print "sww_file",sww_file
marker = "_gosh"
inundation_damage(sww_file, [csv_file, csv_fileII], exposure_file_out_marker=marker, verbose=False)
# Test one file
csv_handle = Exposure(csv_file[:-4] + marker + extension)
struct_loss = csv_handle.get_column(EventDamageModel.STRUCT_LOSS_TITLE)
# print "struct_loss",struct_loss
struct_loss = [float(x) for x in struct_loss]
# pprint(struct_loss)
assert num.allclose(struct_loss, [10.0, 150.0, 66.55333347876866, 0.0])
depth = csv_handle.get_column(EventDamageModel.MAX_DEPTH_TITLE)
# print "depth",depth
depth = [float(x) for x in depth]
assert num.allclose(depth, [3.000000011920929, 2.9166666785875957, 2.2666666785875957, -0.3])
# Test another file
csv_handle = Exposure(csv_fileII[:-4] + marker + extension)
struct_loss = csv_handle.get_column(EventDamageModel.STRUCT_LOSS_TITLE)
# print "struct_loss",struct_loss
struct_loss = [float(x) for x in struct_loss]
# pprint(struct_loss)
assert num.allclose(struct_loss, [10.0, 150.0, 66.553333478768664, 0.0])
depth = csv_handle.get_column(EventDamageModel.MAX_DEPTH_TITLE)
# print "depth",depth
depth = [float(x) for x in depth]
assert num.allclose(depth, [3.000000011920929, 2.9166666785875957, 2.2666666785875957, -0.3])
os.remove(sww.filename)
os.remove(csv_file)
os.remove(csv_fileII)
示例7: test_get_flow_through_cross_section_with_geo
# 需要导入模块: from anuga.shallow_water.shallow_water_domain import Domain [as 别名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import default_order [as 别名]
def test_get_flow_through_cross_section_with_geo(self):
"""test_get_flow_through_cross_section(self):
Test that the total flow through a cross section can be
correctly obtained at run-time from the ANUGA domain.
This test creates a flat bed with a known flow through it and tests
that the function correctly returns the expected flow.
The specifics are
e = -1 m
u = 2 m/s
h = 2 m
w = 3 m (width of channel)
q = u*h*w = 12 m^3/s
This run tries it with georeferencing and with elevation = -1
"""
# Create basic mesh (20m x 3m)
width = 3
length = 20
t_end = 1
points, vertices, boundary = rectangular(length, width, length, width)
# Create shallow water domain
domain = Domain(points, vertices, boundary,
geo_reference=Geo_reference(56, 308500, 6189000))
domain.default_order = 2
domain.set_quantities_to_be_stored(None)
e = -1.0
w = 1.0
h = w-e
u = 2.0
uh = u*h
Br = Reflective_boundary(domain) # Side walls
Bd = Dirichlet_boundary([w, uh, 0]) # 2 m/s across the 3 m inlet:
# Initial conditions
domain.set_quantity('elevation', e)
domain.set_quantity('stage', w)
domain.set_quantity('xmomentum', uh)
domain.set_boundary({'left': Bd, 'right': Bd, 'top': Br, 'bottom': Br})
# Interpolation points down the middle
I = [[0, width/2.],
[length/2., width/2.],
[length, width/2.]]
interpolation_points = domain.geo_reference.get_absolute(I)
for t in domain.evolve(yieldstep=0.1, finaltime=0.5):
# Shortcuts to quantites
stage = domain.get_quantity('stage')
xmomentum = domain.get_quantity('xmomentum')
ymomentum = domain.get_quantity('ymomentum')
# Check that quantities are they should be in the interior
w_t = stage.get_values(interpolation_points)
uh_t = xmomentum.get_values(interpolation_points)
vh_t = ymomentum.get_values(interpolation_points)
assert num.allclose(w_t, w)
assert num.allclose(uh_t, uh)
assert num.allclose(vh_t, 0.0, atol=1.0e-6)
# Check flows through the middle
for i in range(5):
x = length/2. + i*0.23674563 # Arbitrary
cross_section = [[x, 0], [x, width]]
cross_section = domain.geo_reference.get_absolute(cross_section)
Q = domain.get_flow_through_cross_section(cross_section,
verbose=False)
assert num.allclose(Q, uh*width)
import cPickle
cPickle.dump(domain, open('domain_pickle.pickle', 'w'))
domain_restored = cPickle.load(open('domain_pickle.pickle'))
for t in domain_restored.evolve(yieldstep=0.1, finaltime=1.0):
# Shortcuts to quantites
stage = domain_restored.get_quantity('stage')
xmomentum = domain_restored.get_quantity('xmomentum')
ymomentum = domain_restored.get_quantity('ymomentum')
# Check that quantities are they should be in the interior
w_t = stage.get_values(interpolation_points)
uh_t = xmomentum.get_values(interpolation_points)
vh_t = ymomentum.get_values(interpolation_points)
assert num.allclose(w_t, w)
assert num.allclose(uh_t, uh)
assert num.allclose(vh_t, 0.0, atol=1.0e-6)
#.........这里部分代码省略.........
示例8: setUp
# 需要导入模块: from anuga.shallow_water.shallow_water_domain import Domain [as 别名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import default_order [as 别名]
def setUp(self):
import time
self.verbose = Test_File_Conversion.verbose
# Create basic mesh
points, vertices, boundary = rectangular(2, 2)
# Create shallow water domain
domain = Domain(points, vertices, boundary)
domain.default_order = 2
# Set some field values
domain.set_quantity('elevation', lambda x,y: -x)
domain.set_quantity('friction', 0.03)
######################
# Boundary conditions
B = Transmissive_boundary(domain)
domain.set_boundary( {'left': B, 'right': B, 'top': B, 'bottom': B})
######################
#Initial condition - with jumps
bed = domain.quantities['elevation'].vertex_values
stage = num.zeros(bed.shape, num.float)
h = 0.3
for i in range(stage.shape[0]):
if i % 2 == 0:
stage[i,:] = bed[i,:] + h
else:
stage[i,:] = bed[i,:]
domain.set_quantity('stage', stage)
domain.distribute_to_vertices_and_edges()
self.initial_stage = copy.copy(domain.quantities['stage'].vertex_values)
self.domain = domain
C = domain.get_vertex_coordinates()
self.X = C[:,0:6:2].copy()
self.Y = C[:,1:6:2].copy()
self.F = bed
#Write A testfile (not realistic. Values aren't realistic)
self.test_MOST_file = 'most_small'
longitudes = [150.66667, 150.83334, 151., 151.16667]
latitudes = [-34.5, -34.33333, -34.16667, -34]
long_name = 'LON'
lat_name = 'LAT'
nx = 4
ny = 4
six = 6
for ext in ['_ha.nc', '_ua.nc', '_va.nc', '_e.nc']:
fid = NetCDFFile(self.test_MOST_file + ext, netcdf_mode_w)
fid.createDimension(long_name,nx)
fid.createVariable(long_name,netcdf_float,(long_name,))
fid.variables[long_name].point_spacing='uneven'
fid.variables[long_name].units='degrees_east'
fid.variables[long_name][:] = longitudes
fid.createDimension(lat_name,ny)
fid.createVariable(lat_name,netcdf_float,(lat_name,))
fid.variables[lat_name].point_spacing='uneven'
fid.variables[lat_name].units='degrees_north'
fid.variables[lat_name][:] = latitudes
fid.createDimension('TIME',six)
fid.createVariable('TIME',netcdf_float,('TIME',))
fid.variables['TIME'].point_spacing='uneven'
fid.variables['TIME'].units='seconds'
fid.variables['TIME'][:] = [0.0, 0.1, 0.6, 1.1, 1.6, 2.1]
name = ext[1:3].upper()
if name == 'E.': name = 'ELEVATION'
fid.createVariable(name,netcdf_float,('TIME', lat_name, long_name))
fid.variables[name].units='CENTIMETERS'
fid.variables[name].missing_value=-1.e+034
fid.variables[name][:] = [[[0.3400644, 0, -46.63519, -6.50198],
[-0.1214216, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]],
[[0.3400644, 2.291054e-005, -23.33335, -6.50198],
[-0.1213987, 4.581959e-005, -1.594838e-007, 1.421085e-012],
[2.291054e-005, 4.582107e-005, 4.581715e-005, 1.854517e-009],
[0, 2.291054e-005, 2.291054e-005, 0]],
[[0.3400644, 0.0001374632, -23.31503, -6.50198],
#.........这里部分代码省略.........