本文整理汇总了Python中anuga.shallow_water.shallow_water_domain.Domain.set_datadir方法的典型用法代码示例。如果您正苦于以下问题:Python Domain.set_datadir方法的具体用法?Python Domain.set_datadir怎么用?Python Domain.set_datadir使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类anuga.shallow_water.shallow_water_domain.Domain
的用法示例。
在下文中一共展示了Domain.set_datadir方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_sww2pts_centroids_de0
# 需要导入模块: from anuga.shallow_water.shallow_water_domain import Domain [as 别名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_datadir [as 别名]
def test_sww2pts_centroids_de0(self):
"""Test that sww information can be converted correctly to pts data at specified coordinates
- in this case, the centroids.
"""
import time, os
from anuga.file.netcdf import NetCDFFile
# Used for points that lie outside mesh
NODATA_value = 1758323
# Setup
from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular
# Create shallow water domain
domain = Domain(*rectangular(2, 2))
B = Transmissive_boundary(domain)
domain.set_boundary( {'left': B, 'right': B, 'top': B, 'bottom': B})
domain.set_name('datatest_de0')
ptsfile = domain.get_name() + '_elevation.pts'
swwfile = domain.get_name() + '.sww'
domain.set_datadir('.')
domain.format = 'sww'
domain.set_quantity('elevation', lambda x,y: -x-y)
domain.geo_reference = Geo_reference(56,308500,6189000)
sww = SWW_file(domain)
sww.store_connectivity()
sww.store_timestep()
#self.domain.tight_slope_limiters = 1
domain.evolve_to_end(finaltime = 0.01)
sww.store_timestep()
# Check contents in NetCDF
fid = NetCDFFile(sww.filename, netcdf_mode_r)
# Get the variables
x = fid.variables['x'][:]
y = fid.variables['y'][:]
elevation = fid.variables['elevation'][:]
time = fid.variables['time'][:]
stage = fid.variables['stage'][:]
volumes = fid.variables['volumes'][:]
# Invoke interpolation for vertex points
points = num.concatenate( (x[:,num.newaxis],y[:,num.newaxis]), axis=1 )
points = num.ascontiguousarray(points)
sww2pts(domain.get_name() + '.sww',
quantity = 'elevation',
data_points = points,
NODATA_value = NODATA_value)
ref_point_values = elevation
point_values = Geospatial_data(ptsfile).get_attributes()
#print 'P', point_values
#print 'Ref', ref_point_values
assert num.allclose(point_values, ref_point_values)
# Invoke interpolation for centroids
points = domain.get_centroid_coordinates()
#print points
sww2pts(domain.get_name() + '.sww',
quantity = 'elevation',
data_points = points,
NODATA_value = NODATA_value)
#ref_point_values = [-0.5, -0.5, -1, -1, -1, -1, -1.5, -1.5] #At centroids
ref_point_values = [-0.77777777, -0.77777777, -0.99999998, -0.99999998,
-0.99999998, -0.99999998, -1.22222221, -1.22222221]
point_values = Geospatial_data(ptsfile).get_attributes()
#print 'P', point_values
#print 'Ref', ref_point_values
assert num.allclose(point_values, ref_point_values)
fid.close()
#Cleanup
os.remove(sww.filename)
os.remove(ptsfile)
示例2: test_get_mesh_and_quantities_from_unique_vertices_DE0_sww_file
# 需要导入模块: from anuga.shallow_water.shallow_water_domain import Domain [as 别名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_datadir [as 别名]
def test_get_mesh_and_quantities_from_unique_vertices_DE0_sww_file(self):
"""test_get_mesh_and_quantities_from_unique_vertices_sww_file(self):
"""
# Generate a test sww file with non trivial georeference
import time, os
# Setup
#from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular
# Create basic mesh (100m x 5m)
width = 5
length = 50
t_end = 10
points, vertices, boundary = rectangular(10, 1, length, width)
# Create shallow water domain
domain = Domain(points, vertices, boundary,
geo_reference = Geo_reference(56,308500,6189000))
domain.set_name('test_get_mesh_and_quantities_from_unique_vertices_sww_file')
swwfile = domain.get_name() + '.sww'
domain.set_datadir('.')
domain.set_flow_algorithm('DE0')
domain.set_store_vertices_uniquely()
Br = Reflective_boundary(domain) # Side walls
Bd = Dirichlet_boundary([1, 0, 0]) # inflow
domain.set_boundary( {'left': Bd, 'right': Bd, 'top': Br, 'bottom': Br})
for t in domain.evolve(yieldstep=1, finaltime = t_end):
pass
# Read it
# Get mesh and quantities from sww file
X = get_mesh_and_quantities_from_file(swwfile,
quantities=['elevation',
'stage',
'xmomentum',
'ymomentum'],
verbose=False)
mesh, quantities, time = X
#print quantities
#print time
dhash = domain.get_nodes()[:,0]*10+domain.get_nodes()[:,1]
mhash = mesh.nodes[:,0]*10+mesh.nodes[:,1]
#print 'd_nodes',len(dhash)
#print 'm_nodes',len(mhash)
di = num.argsort(dhash)
mi = num.argsort(mhash)
minv = num.argsort(mi)
dinv = num.argsort(di)
#print 'd_tri',len(domain.get_triangles())
#print 'm_tri',len(mesh.triangles)
# Check that mesh has been recovered
# triangle order should be ok
assert num.allclose(mesh.nodes[mi,:],domain.get_nodes()[di,:])
assert num.alltrue(minv[mesh.triangles] == dinv[domain.get_triangles()])
# Check that time has been recovered
assert num.allclose(time, range(t_end+1))
z=domain.get_quantity('elevation').get_values(location='vertices').flatten()
assert num.allclose(quantities['elevation'], z)
for q in ['stage', 'xmomentum', 'ymomentum']:
# Get quantity at last timestep
q_ref=domain.get_quantity(q).get_values(location='vertices').flatten()
#print q,quantities[q]
q_sww=quantities[q][-1,:]
msg = 'Quantity %s failed to be recovered' %q
assert num.allclose(q_ref, q_sww, atol=1.0e-6), msg
示例3: test_get_mesh_and_quantities_from_de0_sww_file
# 需要导入模块: from anuga.shallow_water.shallow_water_domain import Domain [as 别名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_datadir [as 别名]
def test_get_mesh_and_quantities_from_de0_sww_file(self):
"""test_get_mesh_and_quantities_from_sww_file(self):
"""
# Generate a test sww file with non trivial georeference
import time, os
# Setup
#from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular
# Create basic mesh (100m x 5m)
width = 5
length = 50
t_end = 10
points, vertices, boundary = rectangular(length, width, 50, 5)
# Create shallow water domain
domain = Domain(points, vertices, boundary,
geo_reference = Geo_reference(56,308500,6189000))
domain.set_name('test_get_mesh_and_quantities_from_sww_file')
swwfile = domain.get_name() + '.sww'
domain.set_datadir('.')
domain.set_flow_algorithm('DE0')
Br = Reflective_boundary(domain) # Side walls
Bd = Dirichlet_boundary([1, 0, 0]) # inflow
domain.set_boundary( {'left': Bd, 'right': Bd, 'top': Br, 'bottom': Br})
for t in domain.evolve(yieldstep=1, finaltime = t_end):
pass
# Read it
# Get mesh and quantities from sww file
X = get_mesh_and_quantities_from_file(swwfile,
quantities=['elevation',
'stage',
'xmomentum',
'ymomentum'],
verbose=False)
mesh, quantities, time = X
# Check that mesh has been recovered
assert num.alltrue(mesh.triangles == domain.get_triangles())
assert num.allclose(mesh.nodes, domain.get_nodes())
# Check that time has been recovered
assert num.allclose(time, range(t_end+1))
# Check that quantities have been recovered
# (sww files use single precision)
z=domain.get_quantity('elevation').get_values(location='unique vertices')
assert num.allclose(quantities['elevation'], z)
for q in ['stage', 'xmomentum', 'ymomentum']:
# Get quantity at last timestep
q_ref=domain.get_quantity(q).get_values(location='unique vertices')
#print q,quantities[q]
q_sww=quantities[q][-1,:]
msg = 'Quantity %s failed to be recovered' %q
assert num.allclose(q_ref, q_sww, atol=1.0e-2), msg
示例4: test_get_energy_through_cross_section
# 需要导入模块: from anuga.shallow_water.shallow_water_domain import Domain [as 别名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_datadir [as 别名]
def test_get_energy_through_cross_section(self):
"""test_get_energy_through_cross_section(self):
Test that the specific and total energy through a cross section can be
correctly obtained from an sww file.
This test creates a flat bed with a known flow through it and tests
that the function correctly returns the expected energies.
The specifics are
u = 2 m/s
h = 1 m
w = 3 m (width of channel)
q = u*h*w = 6 m^3/s
Es = h + 0.5*v*v/g # Specific energy head [m]
Et = w + 0.5*v*v/g # Total energy head [m]
This test uses georeferencing
"""
import time, os
from anuga.file.netcdf import NetCDFFile
# Setup
#from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular
# Create basic mesh (20m x 3m)
width = 3
length = 20
t_end = 1
points, vertices, boundary = rectangular(length, width,
length, width)
# Create shallow water domain
domain = Domain(points, vertices, boundary,
geo_reference = Geo_reference(56,308500,6189000))
domain.default_order = 2
domain.set_minimum_storable_height(0.01)
domain.set_name('flowtest')
swwfile = domain.get_name() + '.sww'
domain.set_datadir('.')
domain.format = 'sww'
domain.smooth = True
e = -1.0
w = 1.0
h = w-e
u = 2.0
uh = u*h
Br = Reflective_boundary(domain) # Side walls
Bd = Dirichlet_boundary([w, uh, 0]) # 2 m/s across the 3 m inlet:
domain.set_quantity('elevation', e)
domain.set_quantity('stage', w)
domain.set_quantity('xmomentum', uh)
domain.set_boundary( {'left': Bd, 'right': Bd, 'top': Br, 'bottom': Br})
for t in domain.evolve(yieldstep=1, finaltime = t_end):
pass
# Check that momentum is as it should be in the interior
I = [[0, width/2.],
[length/2., width/2.],
[length, width/2.]]
I = domain.geo_reference.get_absolute(I)
f = file_function(swwfile,
quantities=['stage', 'xmomentum', 'ymomentum'],
interpolation_points=I,
verbose=False)
for t in range(t_end+1):
for i in range(3):
#print i, t, f(t, i)
assert num.allclose(f(t, i), [w, uh, 0], atol=1.0e-6)
# Check energies through the middle
for i in range(5):
x = length/2. + i*0.23674563 # Arbitrary
cross_section = [[x, 0], [x, width]]
cross_section = domain.geo_reference.get_absolute(cross_section)
time, Es = get_energy_through_cross_section(swwfile,
cross_section,
kind='specific',
verbose=False)
assert num.allclose(Es, h + 0.5*u*u/g)
time, Et = get_energy_through_cross_section(swwfile,
#.........这里部分代码省略.........
示例5: test_get_flow_through_cross_section_stored_uniquely
# 需要导入模块: from anuga.shallow_water.shallow_water_domain import Domain [as 别名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_datadir [as 别名]
def test_get_flow_through_cross_section_stored_uniquely(self):
"""test_get_flow_through_cross_section_stored_uniquely(self):
Test that the total flow through a cross section can be
correctly obtained from an sww file.
This test creates a flat bed with a known flow through it and tests
that the function correctly returns the expected flow.
The specifics are
u = 2 m/s
h = 1 m
w = 3 m (width of channel)
q = u*h*w = 6 m^3/s
"""
import time, os
from anuga.file.netcdf import NetCDFFile
# Setup
#from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular
# Create basic mesh (20m x 3m)
width = 3
length = 20
t_end = 3
points, vertices, boundary = rectangular(length, width,
length, width)
# Create shallow water domain
domain = Domain(points, vertices, boundary)
domain.default_order = 2
domain.set_minimum_storable_height(0.01)
domain.set_name('flowtest_uniquely')
swwfile = domain.get_name() + '.sww'
domain.set_store_vertices_uniquely()
domain.set_datadir('.')
domain.format = 'sww'
domain.smooth = True
h = 1.0
u = 2.0
uh = u*h
Br = Reflective_boundary(domain) # Side walls
Bd = Dirichlet_boundary([h, uh, 0]) # 2 m/s across the 3 m inlet:
domain.set_quantity('elevation', 0.0)
domain.set_quantity('stage', h)
domain.set_quantity('xmomentum', uh)
domain.set_boundary( {'left': Bd, 'right': Bd, 'top': Br, 'bottom': Br})
for t in domain.evolve(yieldstep=1, finaltime = t_end):
pass
# Check that momentum is as it should be in the interior
I = [[0, width/2.],
[length/2., width/2.],
[length, width/2.]]
f = file_function(swwfile,
quantities=['stage', 'xmomentum', 'ymomentum'],
interpolation_points=I,
verbose=False)
for t in range(t_end+1):
for i in range(3):
assert num.allclose(f(t, i), [1, 2, 0], atol=1.0e-6)
# Check flows through the middle
for i in range(5):
x = length/2. + i*0.23674563 # Arbitrary
cross_section = [[x, 0], [x, width]]
time, Q = get_flow_through_cross_section(swwfile,
cross_section,
verbose=False)
assert num.allclose(Q, uh*width)
# Try the same with partial lines
x = length/2.
for i in range(5):
start_point = [length/2., i*width/5.]
#print start_point
cross_section = [start_point, [length/2., width]]
time, Q = get_flow_through_cross_section(swwfile,
cross_section,
verbose=False)
#.........这里部分代码省略.........
示例6: test_get_maximum_inundation_de0
# 需要导入模块: from anuga.shallow_water.shallow_water_domain import Domain [as 别名]
# 或者: from anuga.shallow_water.shallow_water_domain.Domain import set_datadir [as 别名]
def test_get_maximum_inundation_de0(self):
"""Test that sww information can be converted correctly to maximum
runup elevation and location (without and with georeferencing)
This test creates a slope and a runup which is maximal (~11m) at around 10s
and levels out to the boundary condition (1m) at about 30s.
"""
import time, os
from anuga.file.netcdf import NetCDFFile
#Setup
#from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular
# Create basic mesh (100m x 100m)
points, vertices, boundary = rectangular(20, 5, 100, 50)
# Create shallow water domain
domain = Domain(points, vertices, boundary)
domain.default_order = 2
domain.set_minimum_storable_height(0.01)
filename = 'runup_test_3'
domain.set_name(filename)
swwfile = domain.get_name() + '.sww'
domain.set_datadir('.')
domain.format = 'sww'
domain.smooth = True
# FIXME (Ole): Backwards compatibility
# Look at sww file and see what happens when
# domain.tight_slope_limiters = 1
domain.tight_slope_limiters = 0
domain.use_centroid_velocities = 0 # Backwards compatibility (7/5/8)
Br = Reflective_boundary(domain)
Bd = Dirichlet_boundary([1.0,0,0])
#---------- First run without geo referencing
domain.set_quantity('elevation', lambda x,y: -0.2*x + 14) # Slope
domain.set_quantity('stage', -6)
domain.set_boundary( {'left': Br, 'right': Bd, 'top': Br, 'bottom': Br})
for t in domain.evolve(yieldstep=1, finaltime = 50):
pass
# Check maximal runup
runup = get_maximum_inundation_elevation(swwfile)
location = get_maximum_inundation_location(swwfile)
#print 'Runup, location', runup, location
assert num.allclose(runup, 4.66666666667)
assert num.allclose(location[0], 46.666668)
# Check final runup
runup = get_maximum_inundation_elevation(swwfile, time_interval=[45,50])
location = get_maximum_inundation_location(swwfile, time_interval=[45,50])
#print 'Runup, location:',runup, location
assert num.allclose(runup, 3.81481488546)
assert num.allclose(location[0], 51.666668)
# Check runup restricted to a polygon
p = [[50,1], [99,1], [99,49], [50,49]]
runup = get_maximum_inundation_elevation(swwfile, polygon=p)
location = get_maximum_inundation_location(swwfile, polygon=p)
#print runup, location
assert num.allclose(runup, 3.81481488546)
assert num.allclose(location[0], 51.6666666)
# Check that mimimum_storable_height works
fid = NetCDFFile(swwfile, netcdf_mode_r) # Open existing file
stage = fid.variables['stage_c'][:]
z = fid.variables['elevation_c'][:]
xmomentum = fid.variables['xmomentum_c'][:]
ymomentum = fid.variables['ymomentum_c'][:]
for i in range(stage.shape[0]):
h = stage[i]-z # depth vector at time step i
# Check every node location
for j in range(stage.shape[1]):
# Depth being either exactly zero implies
# momentum being zero.
# Or else depth must be greater than or equal to
# the minimal storable height
if h[j] == 0.0:
assert xmomentum[i,j] == 0.0
assert ymomentum[i,j] == 0.0
else:
assert h[j] >= 0.0
fid.close()
#.........这里部分代码省略.........