本文整理汇总了Python中anuga.shallow_water.shallow_water_domain.Domain类的典型用法代码示例。如果您正苦于以下问题:Python Domain类的具体用法?Python Domain怎么用?Python Domain使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Domain类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_unique_vertices_average_loc_unique_vert
def test_unique_vertices_average_loc_unique_vert(self):
"""
get values based on triangle lists.
"""
#Create basic mesh
points, vertices, boundary = rectangular(1, 3)
#Create shallow water domain
domain = Domain(points, vertices, boundary)
domain.build_tagged_elements_dictionary({'bottom':[0,1],
'top':[4,5],
'not_bottom':[2,3,4,5]})
#Set friction
domain.set_quantity('friction', add_x_y)
av_bottom = 2.0/3.0
add = 60.0
calc_frict = av_bottom + add
domain.set_tag_region(Add_value_to_region('bottom', 'friction', add,
initial_quantity='friction',
location='unique vertices',
average=True
))
#print domain.quantities['friction'].get_values()
frict_points = domain.quantities['friction'].get_values()
assert num.allclose(frict_points[0],\
[ calc_frict, calc_frict, calc_frict])
assert num.allclose(frict_points[1],\
[ calc_frict, calc_frict, calc_frict])
assert num.allclose(frict_points[2],\
[ calc_frict, 1.0 + 2.0/3.0, calc_frict])
assert num.allclose(frict_points[3],\
[ 2.0/3.0,calc_frict, 1.0 + 2.0/3.0])
示例2: test_unique_verticesII
def test_unique_verticesII(self):
"""
get values based on triangle lists.
"""
#Create basic mesh
points, vertices, boundary = rectangular(1, 3)
#Create shallow water domain
domain = Domain(points, vertices, boundary)
domain.build_tagged_elements_dictionary({'bottom':[0,1],
'top':[4,5],
'all':[0,1,2,3,4,5]})
#Set friction
manning = 0.07
domain.set_quantity('friction', manning)
domain.set_tag_region(Add_value_to_region('bottom', 'friction', 1.0,initial_quantity='friction', location = 'unique vertices'))
#print domain.quantities['friction'].get_values()
assert num.allclose(domain.quantities['friction'].get_values(),\
[[ 1.07, 1.07, 1.07],
[ 1.07, 1.07, 1.07],
[ 1.07, 0.07, 1.07],
[ 0.07, 1.07, 0.07],
[ 0.07, 0.07, 0.07],
[ 0.07, 0.07, 0.07]])
示例3: load_pts_as_polygon
def load_pts_as_polygon(points_file, minimum_triangle_angle=3.0):
"""
WARNING: This function is not fully working.
Function to return a polygon returned from alpha shape, given a points file.
WARNING: Alpha shape returns multiple polygons, but this function only
returns one polygon.
"""
from anuga.pmesh.mesh import importMeshFromFile
from anuga.shallow_water.shallow_water_domain import Domain
mesh = importMeshFromFile(points_file)
mesh.auto_segment()
mesh.exportASCIIsegmentoutlinefile("outline.tsh")
mesh2 = importMeshFromFile("outline.tsh")
mesh2.generate_mesh(maximum_triangle_area=1000000000,
minimum_triangle_angle=minimum_triangle_angle,
verbose=False)
mesh2.export_mesh_file('outline_meshed.tsh')
domain = Domain("outline_meshed.tsh", use_cache = False)
polygon = domain.get_boundary_polygon()
return polygon
示例4: test_get_maximum_inundation_de0
def test_get_maximum_inundation_de0(self):
"""Test that sww information can be converted correctly to maximum
runup elevation and location (without and with georeferencing)
This test creates a slope and a runup which is maximal (~11m) at around 10s
and levels out to the boundary condition (1m) at about 30s.
"""
import time, os
from anuga.file.netcdf import NetCDFFile
#Setup
#from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular
# Create basic mesh (100m x 100m)
points, vertices, boundary = rectangular(20, 5, 100, 50)
# Create shallow water domain
domain = Domain(points, vertices, boundary)
domain.default_order = 2
domain.set_minimum_storable_height(0.01)
filename = 'runup_test_3'
domain.set_name(filename)
swwfile = domain.get_name() + '.sww'
domain.set_datadir('.')
domain.format = 'sww'
domain.smooth = True
# FIXME (Ole): Backwards compatibility
# Look at sww file and see what happens when
# domain.tight_slope_limiters = 1
domain.tight_slope_limiters = 0
domain.use_centroid_velocities = 0 # Backwards compatibility (7/5/8)
Br = Reflective_boundary(domain)
Bd = Dirichlet_boundary([1.0,0,0])
#---------- First run without geo referencing
domain.set_quantity('elevation', lambda x,y: -0.2*x + 14) # Slope
domain.set_quantity('stage', -6)
domain.set_boundary( {'left': Br, 'right': Bd, 'top': Br, 'bottom': Br})
for t in domain.evolve(yieldstep=1, finaltime = 50):
pass
# Check maximal runup
runup = get_maximum_inundation_elevation(swwfile)
location = get_maximum_inundation_location(swwfile)
#print 'Runup, location', runup, location
assert num.allclose(runup, 4.66666666667)
assert num.allclose(location[0], 46.666668)
# Check final runup
runup = get_maximum_inundation_elevation(swwfile, time_interval=[45,50])
location = get_maximum_inundation_location(swwfile, time_interval=[45,50])
#print 'Runup, location:',runup, location
assert num.allclose(runup, 3.81481488546)
assert num.allclose(location[0], 51.666668)
# Check runup restricted to a polygon
p = [[50,1], [99,1], [99,49], [50,49]]
runup = get_maximum_inundation_elevation(swwfile, polygon=p)
location = get_maximum_inundation_location(swwfile, polygon=p)
#print runup, location
assert num.allclose(runup, 3.81481488546)
assert num.allclose(location[0], 51.6666666)
# Check that mimimum_storable_height works
fid = NetCDFFile(swwfile, netcdf_mode_r) # Open existing file
stage = fid.variables['stage_c'][:]
z = fid.variables['elevation_c'][:]
xmomentum = fid.variables['xmomentum_c'][:]
ymomentum = fid.variables['ymomentum_c'][:]
for i in range(stage.shape[0]):
h = stage[i]-z # depth vector at time step i
# Check every node location
for j in range(stage.shape[1]):
# Depth being either exactly zero implies
# momentum being zero.
# Or else depth must be greater than or equal to
# the minimal storable height
if h[j] == 0.0:
assert xmomentum[i,j] == 0.0
assert ymomentum[i,j] == 0.0
else:
assert h[j] >= 0.0
fid.close()
#.........这里部分代码省略.........
示例5: test_merge_swwfiles
def test_merge_swwfiles(self):
from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular, \
rectangular_cross
from anuga.shallow_water.shallow_water_domain import Domain
from anuga.file.sww import SWW_file
from anuga.abstract_2d_finite_volumes.generic_boundary_conditions import \
Dirichlet_boundary
Bd = Dirichlet_boundary([0.5, 0., 0.])
# Create shallow water domain
domain = Domain(*rectangular_cross(2, 2))
domain.set_name('test1')
domain.set_quantity('elevation', 2)
domain.set_quantity('stage', 5)
domain.set_boundary({'left': Bd, 'right': Bd, 'top': Bd, 'bottom': Bd})
for t in domain.evolve(yieldstep=0.5, finaltime=1):
pass
domain = Domain(*rectangular(3, 3))
domain.set_name('test2')
domain.set_quantity('elevation', 3)
domain.set_quantity('stage', 50)
domain.set_boundary({'left': Bd, 'right': Bd, 'top': Bd, 'bottom': Bd})
for t in domain.evolve(yieldstep=0.5, finaltime=1):
pass
outfile = 'test_out.sww'
_sww_merge(['test1.sww', 'test2.sww'], outfile)
self.assertTrue(os.access(outfile, os.F_OK))
# remove temp files
if not sys.platform == 'win32':
os.remove('test1.sww')
os.remove('test2.sww')
os.remove(outfile)
示例6: test_sww2pts_centroids_de0
def test_sww2pts_centroids_de0(self):
"""Test that sww information can be converted correctly to pts data at specified coordinates
- in this case, the centroids.
"""
import time, os
from anuga.file.netcdf import NetCDFFile
# Used for points that lie outside mesh
NODATA_value = 1758323
# Setup
from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular
# Create shallow water domain
domain = Domain(*rectangular(2, 2))
B = Transmissive_boundary(domain)
domain.set_boundary( {'left': B, 'right': B, 'top': B, 'bottom': B})
domain.set_name('datatest_de0')
ptsfile = domain.get_name() + '_elevation.pts'
swwfile = domain.get_name() + '.sww'
domain.set_datadir('.')
domain.format = 'sww'
domain.set_quantity('elevation', lambda x,y: -x-y)
domain.geo_reference = Geo_reference(56,308500,6189000)
sww = SWW_file(domain)
sww.store_connectivity()
sww.store_timestep()
#self.domain.tight_slope_limiters = 1
domain.evolve_to_end(finaltime = 0.01)
sww.store_timestep()
# Check contents in NetCDF
fid = NetCDFFile(sww.filename, netcdf_mode_r)
# Get the variables
x = fid.variables['x'][:]
y = fid.variables['y'][:]
elevation = fid.variables['elevation'][:]
time = fid.variables['time'][:]
stage = fid.variables['stage'][:]
volumes = fid.variables['volumes'][:]
# Invoke interpolation for vertex points
points = num.concatenate( (x[:,num.newaxis],y[:,num.newaxis]), axis=1 )
points = num.ascontiguousarray(points)
sww2pts(domain.get_name() + '.sww',
quantity = 'elevation',
data_points = points,
NODATA_value = NODATA_value)
ref_point_values = elevation
point_values = Geospatial_data(ptsfile).get_attributes()
#print 'P', point_values
#print 'Ref', ref_point_values
assert num.allclose(point_values, ref_point_values)
# Invoke interpolation for centroids
points = domain.get_centroid_coordinates()
#print points
sww2pts(domain.get_name() + '.sww',
quantity = 'elevation',
data_points = points,
NODATA_value = NODATA_value)
#ref_point_values = [-0.5, -0.5, -1, -1, -1, -1, -1.5, -1.5] #At centroids
ref_point_values = [-0.77777777, -0.77777777, -0.99999998, -0.99999998,
-0.99999998, -0.99999998, -1.22222221, -1.22222221]
point_values = Geospatial_data(ptsfile).get_attributes()
#print 'P', point_values
#print 'Ref', ref_point_values
assert num.allclose(point_values, ref_point_values)
fid.close()
#Cleanup
os.remove(sww.filename)
os.remove(ptsfile)
示例7: rectangular_cross
#------------------------------------------------------------------------------
# Setup computational domain
#------------------------------------------------------------------------------
print 'Setting up domain'
length = 200. #x-Dir
width = 200. #y-dir
dx = dy = 2.0 # Resolution: Length of subdivisions on both axes
#dx = dy = .5 # Resolution: Length of subdivisions on both axes
#dx = dy = .5 # Resolution: Length of subdivisions on both axes
#dx = dy = .1 # Resolution: Length of subdivisions on both axes
points, vertices, boundary = rectangular_cross(int(length/dx), int(width/dy),
len1=length, len2=width)
domain = Domain(points, vertices, boundary)
domain.set_name('Test_WIDE_BRIDGE') # Output name
#domain.set_default_order(2)
#omain.H0 = 0.01
#domain.tight_slope_limiters = 1
domain.set_flow_algorithm('2_0')
print 'Size', len(domain)
#------------------------------------------------------------------------------
# Setup initial conditions
#------------------------------------------------------------------------------
def topography(x, y):
"""Set up a weir
示例8: test_get_mesh_and_quantities_from_de0_sww_file
def test_get_mesh_and_quantities_from_de0_sww_file(self):
"""test_get_mesh_and_quantities_from_sww_file(self):
"""
# Generate a test sww file with non trivial georeference
import time, os
# Setup
#from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular
# Create basic mesh (100m x 5m)
width = 5
length = 50
t_end = 10
points, vertices, boundary = rectangular(length, width, 50, 5)
# Create shallow water domain
domain = Domain(points, vertices, boundary,
geo_reference = Geo_reference(56,308500,6189000))
domain.set_name('test_get_mesh_and_quantities_from_sww_file')
swwfile = domain.get_name() + '.sww'
domain.set_datadir('.')
domain.set_flow_algorithm('DE0')
Br = Reflective_boundary(domain) # Side walls
Bd = Dirichlet_boundary([1, 0, 0]) # inflow
domain.set_boundary( {'left': Bd, 'right': Bd, 'top': Br, 'bottom': Br})
for t in domain.evolve(yieldstep=1, finaltime = t_end):
pass
# Read it
# Get mesh and quantities from sww file
X = get_mesh_and_quantities_from_file(swwfile,
quantities=['elevation',
'stage',
'xmomentum',
'ymomentum'],
verbose=False)
mesh, quantities, time = X
# Check that mesh has been recovered
assert num.alltrue(mesh.triangles == domain.get_triangles())
assert num.allclose(mesh.nodes, domain.get_nodes())
# Check that time has been recovered
assert num.allclose(time, range(t_end+1))
# Check that quantities have been recovered
# (sww files use single precision)
z=domain.get_quantity('elevation').get_values(location='unique vertices')
assert num.allclose(quantities['elevation'], z)
for q in ['stage', 'xmomentum', 'ymomentum']:
# Get quantity at last timestep
q_ref=domain.get_quantity(q).get_values(location='unique vertices')
#print q,quantities[q]
q_sww=quantities[q][-1,:]
msg = 'Quantity %s failed to be recovered' %q
assert num.allclose(q_ref, q_sww, atol=1.0e-2), msg
示例9: test_get_maximum_inundation_from_sww
def test_get_maximum_inundation_from_sww(self):
"""test_get_maximum_inundation_from_sww(self)
Test of get_maximum_inundation_elevation()
and get_maximum_inundation_location().
This is based on test_get_maximum_inundation_3(self) but works with the
stored results instead of with the internal data structure.
This test uses the underlying get_maximum_inundation_data for tests
"""
verbose = False
from anuga.config import minimum_storable_height
initial_runup_height = -0.4
final_runup_height = -0.3
filename = 'runup_test_2'
#--------------------------------------------------------------
# Setup computational domain
#--------------------------------------------------------------
N = 10
points, vertices, boundary = rectangular_cross(N, N)
domain = Domain(points, vertices, boundary)
domain.set_name(filename)
domain.set_maximum_allowed_speed(1.0)
#domain.set_minimum_storable_height(1.0e-5)
domain.set_store_vertices_uniquely()
# FIXME: This works better with old limiters so far
domain.tight_slope_limiters = 0
#--------------------------------------------------------------
# Setup initial conditions
#--------------------------------------------------------------
def topography(x, y):
return -x/2 # linear bed slope
# Use function for elevation
domain.set_quantity('elevation', topography)
domain.set_quantity('friction', 0.) # Zero friction
# Constant negative initial stage
domain.set_quantity('stage', initial_runup_height)
#--------------------------------------------------------------
# Setup boundary conditions
#--------------------------------------------------------------
Br = Reflective_boundary(domain) # Reflective wall
Bd = Dirichlet_boundary([final_runup_height, 0, 0]) # Constant inflow
# All reflective to begin with (still water)
domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br})
#--------------------------------------------------------------
# Test initial inundation height
#--------------------------------------------------------------
indices = domain.get_wet_elements()
z = domain.get_quantity('elevation').\
get_values(location='centroids', indices=indices)
assert num.alltrue(z < initial_runup_height)
q_ref = domain.get_maximum_inundation_elevation(minimum_height=minimum_storable_height)
# First order accuracy
assert num.allclose(q_ref, initial_runup_height, rtol=1.0/N)
#--------------------------------------------------------------
# Let triangles adjust
#--------------------------------------------------------------
q_max = None
for t in domain.evolve(yieldstep = 0.1, finaltime = 1.0):
q = domain.get_maximum_inundation_elevation(minimum_height=minimum_storable_height)
if verbose:
domain.write_time()
print q
if q > q_max:
q_max = q
#--------------------------------------------------------------
# Test inundation height again
#--------------------------------------------------------------
#q_ref = domain.get_maximum_inundation_elevation()
q = get_maximum_inundation_elevation(filename+'.sww')
msg = 'We got %f, should have been %f' % (q, q_max)
assert num.allclose(q, q_max, rtol=2.0/N), msg
msg = 'We got %f, should have been %f' % (q, initial_runup_height)
assert num.allclose(q, initial_runup_height, rtol = 1.0/N), msg
# Test error condition if time interval is out
try:
q = get_maximum_inundation_elevation(filename+'.sww',
time_interval=[2.0, 3.0])
except ValueError:
pass
else:
msg = 'should have caught wrong time interval'
raise Exception, msg
#.........这里部分代码省略.........
示例10: test_region_tags
def test_region_tags(self):
"""get values based on triangle lists."""
#Create basic mesh
points, vertices, boundary = rectangular(1, 3)
#Create shallow water domain
domain = Domain(points, vertices, boundary)
domain.build_tagged_elements_dictionary({'bottom': [0,1],
'top': [4,5],
'all': [0,1,2,3,4,5]})
#Set friction
manning = 0.07
domain.set_quantity('friction', manning)
a = Set_tag_region('bottom', 'friction', 0.09)
b = Set_tag_region('top', 'friction', 1.0)
domain.set_tag_region([a, b])
expected = [[ 0.09, 0.09, 0.09],
[ 0.09, 0.09, 0.09],
[ 0.07, 0.07, 0.07],
[ 0.07, 0.07, 0.07],
[ 1.0, 1.0, 1.0],
[ 1.0, 1.0, 1.0]]
msg = ("\ndomain.quantities['friction']=%s\nexpected value=%s"
% (str(domain.quantities['friction'].get_values()),
str(expected)))
assert num.allclose(domain.quantities['friction'].get_values(),
expected), msg
#c = Add_Value_To_region('all', 'friction', 10.0)
domain.set_tag_region(Add_value_to_region('all', 'friction', 10.0))
#print domain.quantities['friction'].get_values()
assert num.allclose(domain.quantities['friction'].get_values(),
[[ 10.09, 10.09, 10.09],
[ 10.09, 10.09, 10.09],
[ 10.07, 10.07, 10.07],
[ 10.07, 10.07, 10.07],
[ 11.0, 11.0, 11.0],
[ 11.0, 11.0, 11.0]])
# trying a function
domain.set_tag_region(Set_tag_region('top', 'friction', add_x_y))
#print domain.quantities['friction'].get_values()
assert num.allclose(domain.quantities['friction'].get_values(),
[[ 10.09, 10.09, 10.09],
[ 10.09, 10.09, 10.09],
[ 10.07, 10.07, 10.07],
[ 10.07, 10.07, 10.07],
[ 5./3, 2.0, 2./3],
[ 1.0, 2./3, 2.0]])
domain.set_quantity('elevation', 10.0)
domain.set_quantity('stage', 10.0)
domain.set_tag_region(Add_value_to_region('top', 'stage', 1.0,initial_quantity='elevation'))
#print domain.quantities['stage'].get_values()
assert num.allclose(domain.quantities['stage'].get_values(),
[[ 10., 10., 10.],
[ 10., 10., 10.],
[ 10., 10., 10.],
[ 10., 10., 10.],
[ 11.0, 11.0, 11.0],
[ 11.0, 11.0, 11.0]])
domain.set_quantity('elevation', 10.0)
domain.set_quantity('stage', give_me_23)
#this works as well, (is cleaner, but doesn't work for regions)
#domain.set_quantity('stage',
# domain.quantities['stage'].vertex_values+ \
# domain.quantities['elevation'].vertex_values)
domain.set_tag_region(Add_quantities('top', 'elevation','stage'))
#print domain.quantities['stage'].get_values()
assert num.allclose(domain.quantities['elevation'].get_values(),
[[ 10., 10., 10.],
[ 10., 10., 10.],
[ 10., 10., 10.],
[ 10., 10., 10.],
[ 33., 33.0, 33.],
[ 33.0, 33., 33.]])
示例11: _create_domain
def _create_domain(self,d_length,
d_width,
dx,
dy,
elevation_0,
elevation_1,
stage_0,
stage_1):
points, vertices, boundary = rectangular_cross(int(d_length/dx), int(d_width/dy),
len1=d_length, len2=d_width)
domain = Domain(points, vertices, boundary)
domain.set_name('Test_Outlet_Inlet') # Output name
domain.set_store()
domain.set_default_order(2)
domain.H0 = 0.01
domain.tight_slope_limiters = 1
#print 'Size', len(domain)
#------------------------------------------------------------------------------
# Setup initial conditions
#------------------------------------------------------------------------------
def elevation(x, y):
"""Set up a elevation
"""
z = numpy.zeros(x.shape,dtype='d')
z[:] = elevation_0
numpy.putmask(z, x > d_length/2, elevation_1)
return z
def stage(x,y):
"""Set up stage
"""
z = numpy.zeros(x.shape,dtype='d')
z[:] = stage_0
numpy.putmask(z, x > d_length/2, stage_1)
return z
#print 'Setting Quantities....'
domain.set_quantity('elevation', elevation) # Use function for elevation
domain.set_quantity('stage', stage) # Use function for elevation
Br = anuga.Reflective_boundary(domain)
domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br})
return domain
示例12: test_earthquake_tsunami
def test_earthquake_tsunami(self):
from os import sep, getenv
import sys
from anuga.abstract_2d_finite_volumes.mesh_factory \
import rectangular_cross
from anuga.abstract_2d_finite_volumes.quantity import Quantity
from anuga.utilities.system_tools import get_pathname_from_package
"""
Pick the test you want to do; T= 0 test a point source,
T= 1 test single rectangular source, T= 2 test multiple
rectangular sources
"""
# Get path where this test is run
path= get_pathname_from_package('anuga.tsunami_source')
# Choose what test to proceed
T=1
if T==0:
# Fortran output file
filename = path+sep+'tests'+sep+'data'+sep+'fullokada_SP.txt'
# Initial condition of earthquake for multiple source
x0 = 7000.0
y0 = 10000.0
length = 0
width =0
strike = 0.0
depth = 15.0
slip = 10.0
dip =15.0
rake =90.0
ns=1
NSMAX=1
elif T==1:
# Fortran output file
filename = path+sep+'tests'+sep+'data'+sep+'fullokada_SS.txt'
# Initial condition of earthquake for multiple source
x0 = 7000.0
y0 = 10000.0
length = 10.0
width =6.0
strike = 0.0
depth = 15.0
slip = 10.0
dip =15.0
rake =90.0
ns=1
NSMAX=1
elif T==2:
# Fortran output file
filename = path+sep+'tests'+sep+'data'+sep+'fullokada_MS.txt'
# Initial condition of earthquake for multiple source
x0 = [7000.0,10000.0]
y0 = [10000.0,7000.0]
length = [10.0,10.0]
width =[6.0,6.0]
strike = [0.0,0.0]
depth = [15.0,15.0]
slip = [10.0,10.0]
dip = [15.0,15.0]
rake = [90.0,90.0]
ns=2
NSMAX=2
# Get output file from original okada fortran script.
# Vertical displacement is listed under tmp.
polyline_file=open(filename,'r')
lines=polyline_file.readlines()
polyline_file.close()
tmp=[]
stage=[]
for line in lines [0:]:
field = line.split(' ')
z=float(field[2])
tmp.append(z)
# Create domain
dx = dy = 4000
l=20000
w=20000
# Create topography
def topography(x,y):
el=-1000
return el
points, vertices, boundary = rectangular_cross(int(l/dx), int(w/dy),
len1=l, len2=w)
domain = Domain(points, vertices, boundary)
domain.set_name('test')
domain.set_quantity('elevation',topography)
#.........这里部分代码省略.........
示例13: test_get_flow_through_cross_section_stored_uniquely
def test_get_flow_through_cross_section_stored_uniquely(self):
"""test_get_flow_through_cross_section_stored_uniquely(self):
Test that the total flow through a cross section can be
correctly obtained from an sww file.
This test creates a flat bed with a known flow through it and tests
that the function correctly returns the expected flow.
The specifics are
u = 2 m/s
h = 1 m
w = 3 m (width of channel)
q = u*h*w = 6 m^3/s
"""
import time, os
from anuga.file.netcdf import NetCDFFile
# Setup
#from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular
# Create basic mesh (20m x 3m)
width = 3
length = 20
t_end = 3
points, vertices, boundary = rectangular(length, width,
length, width)
# Create shallow water domain
domain = Domain(points, vertices, boundary)
domain.default_order = 2
domain.set_minimum_storable_height(0.01)
domain.set_name('flowtest_uniquely')
swwfile = domain.get_name() + '.sww'
domain.set_store_vertices_uniquely()
domain.set_datadir('.')
domain.format = 'sww'
domain.smooth = True
h = 1.0
u = 2.0
uh = u*h
Br = Reflective_boundary(domain) # Side walls
Bd = Dirichlet_boundary([h, uh, 0]) # 2 m/s across the 3 m inlet:
domain.set_quantity('elevation', 0.0)
domain.set_quantity('stage', h)
domain.set_quantity('xmomentum', uh)
domain.set_boundary( {'left': Bd, 'right': Bd, 'top': Br, 'bottom': Br})
for t in domain.evolve(yieldstep=1, finaltime = t_end):
pass
# Check that momentum is as it should be in the interior
I = [[0, width/2.],
[length/2., width/2.],
[length, width/2.]]
f = file_function(swwfile,
quantities=['stage', 'xmomentum', 'ymomentum'],
interpolation_points=I,
verbose=False)
for t in range(t_end+1):
for i in range(3):
assert num.allclose(f(t, i), [1, 2, 0], atol=1.0e-6)
# Check flows through the middle
for i in range(5):
x = length/2. + i*0.23674563 # Arbitrary
cross_section = [[x, 0], [x, width]]
time, Q = get_flow_through_cross_section(swwfile,
cross_section,
verbose=False)
assert num.allclose(Q, uh*width)
# Try the same with partial lines
x = length/2.
for i in range(5):
start_point = [length/2., i*width/5.]
#print start_point
cross_section = [start_point, [length/2., width]]
time, Q = get_flow_through_cross_section(swwfile,
cross_section,
verbose=False)
#.........这里部分代码省略.........
示例14: test_get_energy_through_cross_section
def test_get_energy_through_cross_section(self):
"""test_get_energy_through_cross_section(self):
Test that the specific and total energy through a cross section can be
correctly obtained from an sww file.
This test creates a flat bed with a known flow through it and tests
that the function correctly returns the expected energies.
The specifics are
u = 2 m/s
h = 1 m
w = 3 m (width of channel)
q = u*h*w = 6 m^3/s
Es = h + 0.5*v*v/g # Specific energy head [m]
Et = w + 0.5*v*v/g # Total energy head [m]
This test uses georeferencing
"""
import time, os
from anuga.file.netcdf import NetCDFFile
# Setup
#from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular
# Create basic mesh (20m x 3m)
width = 3
length = 20
t_end = 1
points, vertices, boundary = rectangular(length, width,
length, width)
# Create shallow water domain
domain = Domain(points, vertices, boundary,
geo_reference = Geo_reference(56,308500,6189000))
domain.default_order = 2
domain.set_minimum_storable_height(0.01)
domain.set_name('flowtest')
swwfile = domain.get_name() + '.sww'
domain.set_datadir('.')
domain.format = 'sww'
domain.smooth = True
e = -1.0
w = 1.0
h = w-e
u = 2.0
uh = u*h
Br = Reflective_boundary(domain) # Side walls
Bd = Dirichlet_boundary([w, uh, 0]) # 2 m/s across the 3 m inlet:
domain.set_quantity('elevation', e)
domain.set_quantity('stage', w)
domain.set_quantity('xmomentum', uh)
domain.set_boundary( {'left': Bd, 'right': Bd, 'top': Br, 'bottom': Br})
for t in domain.evolve(yieldstep=1, finaltime = t_end):
pass
# Check that momentum is as it should be in the interior
I = [[0, width/2.],
[length/2., width/2.],
[length, width/2.]]
I = domain.geo_reference.get_absolute(I)
f = file_function(swwfile,
quantities=['stage', 'xmomentum', 'ymomentum'],
interpolation_points=I,
verbose=False)
for t in range(t_end+1):
for i in range(3):
#print i, t, f(t, i)
assert num.allclose(f(t, i), [w, uh, 0], atol=1.0e-6)
# Check energies through the middle
for i in range(5):
x = length/2. + i*0.23674563 # Arbitrary
cross_section = [[x, 0], [x, width]]
cross_section = domain.geo_reference.get_absolute(cross_section)
time, Es = get_energy_through_cross_section(swwfile,
cross_section,
kind='specific',
verbose=False)
assert num.allclose(Es, h + 0.5*u*u/g)
time, Et = get_energy_through_cross_section(swwfile,
#.........这里部分代码省略.........
示例15: setUp
def setUp(self):
import time
self.verbose = Test_File_Conversion.verbose
# Create basic mesh
points, vertices, boundary = rectangular(2, 2)
# Create shallow water domain
domain = Domain(points, vertices, boundary)
domain.default_order = 2
# Set some field values
domain.set_quantity('elevation', lambda x,y: -x)
domain.set_quantity('friction', 0.03)
######################
# Boundary conditions
B = Transmissive_boundary(domain)
domain.set_boundary( {'left': B, 'right': B, 'top': B, 'bottom': B})
######################
#Initial condition - with jumps
bed = domain.quantities['elevation'].vertex_values
stage = num.zeros(bed.shape, num.float)
h = 0.3
for i in range(stage.shape[0]):
if i % 2 == 0:
stage[i,:] = bed[i,:] + h
else:
stage[i,:] = bed[i,:]
domain.set_quantity('stage', stage)
domain.distribute_to_vertices_and_edges()
self.initial_stage = copy.copy(domain.quantities['stage'].vertex_values)
self.domain = domain
C = domain.get_vertex_coordinates()
self.X = C[:,0:6:2].copy()
self.Y = C[:,1:6:2].copy()
self.F = bed
#Write A testfile (not realistic. Values aren't realistic)
self.test_MOST_file = 'most_small'
longitudes = [150.66667, 150.83334, 151., 151.16667]
latitudes = [-34.5, -34.33333, -34.16667, -34]
long_name = 'LON'
lat_name = 'LAT'
nx = 4
ny = 4
six = 6
for ext in ['_ha.nc', '_ua.nc', '_va.nc', '_e.nc']:
fid = NetCDFFile(self.test_MOST_file + ext, netcdf_mode_w)
fid.createDimension(long_name,nx)
fid.createVariable(long_name,netcdf_float,(long_name,))
fid.variables[long_name].point_spacing='uneven'
fid.variables[long_name].units='degrees_east'
fid.variables[long_name][:] = longitudes
fid.createDimension(lat_name,ny)
fid.createVariable(lat_name,netcdf_float,(lat_name,))
fid.variables[lat_name].point_spacing='uneven'
fid.variables[lat_name].units='degrees_north'
fid.variables[lat_name][:] = latitudes
fid.createDimension('TIME',six)
fid.createVariable('TIME',netcdf_float,('TIME',))
fid.variables['TIME'].point_spacing='uneven'
fid.variables['TIME'].units='seconds'
fid.variables['TIME'][:] = [0.0, 0.1, 0.6, 1.1, 1.6, 2.1]
name = ext[1:3].upper()
if name == 'E.': name = 'ELEVATION'
fid.createVariable(name,netcdf_float,('TIME', lat_name, long_name))
fid.variables[name].units='CENTIMETERS'
fid.variables[name].missing_value=-1.e+034
fid.variables[name][:] = [[[0.3400644, 0, -46.63519, -6.50198],
[-0.1214216, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]],
[[0.3400644, 2.291054e-005, -23.33335, -6.50198],
[-0.1213987, 4.581959e-005, -1.594838e-007, 1.421085e-012],
[2.291054e-005, 4.582107e-005, 4.581715e-005, 1.854517e-009],
[0, 2.291054e-005, 2.291054e-005, 0]],
[[0.3400644, 0.0001374632, -23.31503, -6.50198],
#.........这里部分代码省略.........