本文整理汇总了Python中UM.Math.Polygon.Polygon.approximatedCircle方法的典型用法代码示例。如果您正苦于以下问题:Python Polygon.approximatedCircle方法的具体用法?Python Polygon.approximatedCircle怎么用?Python Polygon.approximatedCircle使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类UM.Math.Polygon.Polygon
的用法示例。
在下文中一共展示了Polygon.approximatedCircle方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _computeDisallowedAreasPrime
# 需要导入模块: from UM.Math.Polygon import Polygon [as 别名]
# 或者: from UM.Math.Polygon.Polygon import approximatedCircle [as 别名]
def _computeDisallowedAreasPrime(self, border_size, used_extruders):
result = {}
machine_width = self._global_container_stack.getProperty("machine_width", "value")
machine_depth = self._global_container_stack.getProperty("machine_depth", "value")
for extruder in used_extruders:
prime_x = extruder.getProperty("extruder_prime_pos_x", "value")
prime_y = - extruder.getProperty("extruder_prime_pos_y", "value")
#Ignore extruder prime position if it is not set
if prime_x == 0 and prime_y == 0:
result[extruder.getId()] = []
continue
if not self._global_container_stack.getProperty("machine_center_is_zero", "value"):
prime_x = prime_x - machine_width / 2 #Offset by half machine_width and _depth to put the origin in the front-left.
prime_y = prime_y + machine_depth / 2
prime_polygon = Polygon.approximatedCircle(PRIME_CLEARANCE)
prime_polygon = prime_polygon.getMinkowskiHull(Polygon.approximatedCircle(border_size))
prime_polygon = prime_polygon.translate(prime_x, prime_y)
result[extruder.getId()] = [prime_polygon]
return result
示例2: test_getConvexHullPrintingMesh
# 需要导入模块: from UM.Math.Polygon import Polygon [as 别名]
# 或者: from UM.Math.Polygon.Polygon import approximatedCircle [as 别名]
def test_getConvexHullPrintingMesh(convex_hull_decorator):
node = SceneNode()
node.addDecorator(PrintingDecorator())
with patch("UM.Application.Application.getInstance", MagicMock(return_value=mocked_application)):
convex_hull_decorator.setNode(node)
convex_hull_decorator._compute2DConvexHull = MagicMock(return_value = Polygon.approximatedCircle(10))
assert convex_hull_decorator.getConvexHull() == Polygon.approximatedCircle(10)
示例3: _computeDisallowedAreasPrime
# 需要导入模块: from UM.Math.Polygon import Polygon [as 别名]
# 或者: from UM.Math.Polygon.Polygon import approximatedCircle [as 别名]
def _computeDisallowedAreasPrime(self, border_size, used_extruders):
result = {}
machine_width = self._global_container_stack.getProperty("machine_width", "value")
machine_depth = self._global_container_stack.getProperty("machine_depth", "value")
for extruder in used_extruders:
prime_x = extruder.getProperty("extruder_prime_pos_x", "value") - machine_width / 2 #Offset by half machine_width and _depth to put the origin in the front-left.
prime_y = machine_depth / 2 - extruder.getProperty("extruder_prime_pos_y", "value")
prime_polygon = Polygon.approximatedCircle(PRIME_CLEARANCE)
prime_polygon = prime_polygon.translate(prime_x, prime_y)
prime_polygon = prime_polygon.getMinkowskiHull(Polygon.approximatedCircle(border_size))
result[extruder.getId()] = [prime_polygon]
return result
示例4: create
# 需要导入模块: from UM.Math.Polygon import Polygon [as 别名]
# 或者: from UM.Math.Polygon.Polygon import approximatedCircle [as 别名]
def create(cls, scene_root = None, fixed_nodes = None, scale = 0.5, x = 350, y = 250, min_offset = 8):
arranger = Arrange(x, y, x // 2, y // 2, scale = scale)
arranger.centerFirst()
if fixed_nodes is None:
fixed_nodes = []
for node_ in DepthFirstIterator(scene_root):
# Only count sliceable objects
if node_.callDecoration("isSliceable"):
fixed_nodes.append(node_)
# Place all objects fixed nodes
for fixed_node in fixed_nodes:
vertices = fixed_node.callDecoration("getConvexHullHead") or fixed_node.callDecoration("getConvexHull")
if not vertices:
continue
vertices = vertices.getMinkowskiHull(Polygon.approximatedCircle(min_offset))
points = copy.deepcopy(vertices._points)
# After scaling (like up to 0.1 mm) the node might not have points
if len(points) == 0:
continue
shape_arr = ShapeArray.fromPolygon(points, scale = scale)
arranger.place(0, 0, shape_arr)
# If a build volume was set, add the disallowed areas
if Arrange.build_volume:
disallowed_areas = Arrange.build_volume.getDisallowedAreasNoBrim()
for area in disallowed_areas:
points = copy.deepcopy(area._points)
shape_arr = ShapeArray.fromPolygon(points, scale = scale)
arranger.place(0, 0, shape_arr, update_empty = False)
return arranger
示例5: _computeDisallowedAreasPrinted
# 需要导入模块: from UM.Math.Polygon import Polygon [as 别名]
# 或者: from UM.Math.Polygon.Polygon import approximatedCircle [as 别名]
def _computeDisallowedAreasPrinted(self, used_extruders):
result = {}
for extruder in used_extruders:
result[extruder.getId()] = []
#Currently, the only normally printed object is the prime tower.
if ExtruderManager.getInstance().getResolveOrValue("prime_tower_enable") == True:
prime_tower_size = self._global_container_stack.getProperty("prime_tower_size", "value")
machine_width = self._global_container_stack.getProperty("machine_width", "value")
machine_depth = self._global_container_stack.getProperty("machine_depth", "value")
prime_tower_x = self._global_container_stack.getProperty("prime_tower_position_x", "value")
prime_tower_y = - self._global_container_stack.getProperty("prime_tower_position_y", "value")
if not self._global_container_stack.getProperty("machine_center_is_zero", "value"):
prime_tower_x = prime_tower_x - machine_width / 2 #Offset by half machine_width and _depth to put the origin in the front-left.
prime_tower_y = prime_tower_y + machine_depth / 2
prime_tower_area = Polygon([
[prime_tower_x - prime_tower_size, prime_tower_y - prime_tower_size],
[prime_tower_x, prime_tower_y - prime_tower_size],
[prime_tower_x, prime_tower_y],
[prime_tower_x - prime_tower_size, prime_tower_y],
])
prime_tower_area = prime_tower_area.getMinkowskiHull(Polygon.approximatedCircle(0))
for extruder in used_extruders:
result[extruder.getId()].append(prime_tower_area) #The prime tower location is the same for each extruder, regardless of offset.
return result
示例6: _add2DAdhesionMargin
# 需要导入模块: from UM.Math.Polygon import Polygon [as 别名]
# 或者: from UM.Math.Polygon.Polygon import approximatedCircle [as 别名]
def _add2DAdhesionMargin(self, poly: Polygon) -> Polygon:
if not self._global_stack:
return Polygon()
# Compensate for raft/skirt/brim
# Add extra margin depending on adhesion type
adhesion_type = self._global_stack.getProperty("adhesion_type", "value")
max_length_available = 0.5 * min(
self._getSettingProperty("machine_width", "value"),
self._getSettingProperty("machine_depth", "value")
)
if adhesion_type == "raft":
extra_margin = min(max_length_available, max(0, self._getSettingProperty("raft_margin", "value")))
elif adhesion_type == "brim":
extra_margin = min(max_length_available, max(0, self._getSettingProperty("brim_line_count", "value") * self._getSettingProperty("skirt_brim_line_width", "value")))
elif adhesion_type == "none":
extra_margin = 0
elif adhesion_type == "skirt":
extra_margin = min(max_length_available, max(
0, self._getSettingProperty("skirt_gap", "value") +
self._getSettingProperty("skirt_line_count", "value") * self._getSettingProperty("skirt_brim_line_width", "value")))
else:
raise Exception("Unknown bed adhesion type. Did you forget to update the convex hull calculations for your new bed adhesion type?")
# Adjust head_and_fans with extra margin
if extra_margin > 0:
extra_margin_polygon = Polygon.approximatedCircle(extra_margin)
poly = poly.getMinkowskiHull(extra_margin_polygon)
return poly
示例7: test_parts_of_fromNode
# 需要导入模块: from UM.Math.Polygon import Polygon [as 别名]
# 或者: from UM.Math.Polygon.Polygon import approximatedCircle [as 别名]
def test_parts_of_fromNode():
from UM.Math.Polygon import Polygon
p = Polygon(numpy.array([[-2, -2], [2, -2], [2, 2], [-2, 2]], dtype=numpy.int32))
offset = 1
p_offset = p.getMinkowskiHull(Polygon.approximatedCircle(offset))
assert len(numpy.where(p_offset._points[:, 0] >= 2.9)) > 0
assert len(numpy.where(p_offset._points[:, 0] <= -2.9)) > 0
assert len(numpy.where(p_offset._points[:, 1] >= 2.9)) > 0
assert len(numpy.where(p_offset._points[:, 1] <= -2.9)) > 0
示例8: test_parts_of_fromNode2
# 需要导入模块: from UM.Math.Polygon import Polygon [as 别名]
# 或者: from UM.Math.Polygon.Polygon import approximatedCircle [as 别名]
def test_parts_of_fromNode2():
from UM.Math.Polygon import Polygon
p = Polygon(numpy.array([[-2, -2], [2, -2], [2, 2], [-2, 2]], dtype=numpy.int32) * 2) # 4x4
offset = 13.3
scale = 0.5
p_offset = p.getMinkowskiHull(Polygon.approximatedCircle(offset))
shape_arr1 = ShapeArray.fromPolygon(p._points, scale = scale)
shape_arr2 = ShapeArray.fromPolygon(p_offset._points, scale = scale)
assert shape_arr1.arr.shape[0] >= (4 * scale) - 1 # -1 is to account for rounding errors
assert shape_arr2.arr.shape[0] >= (2 * offset + 4) * scale - 1
示例9: fromNode
# 需要导入模块: from UM.Math.Polygon import Polygon [as 别名]
# 或者: from UM.Math.Polygon.Polygon import approximatedCircle [as 别名]
def fromNode(cls, node, min_offset, scale = 0.5):
transform = node._transformation
transform_x = transform._data[0][3]
transform_y = transform._data[2][3]
hull_verts = node.callDecoration("getConvexHull")
# For one_at_a_time printing you need the convex hull head.
hull_head_verts = node.callDecoration("getConvexHullHead") or hull_verts
offset_verts = hull_head_verts.getMinkowskiHull(Polygon.approximatedCircle(min_offset))
offset_points = copy.deepcopy(offset_verts._points) # x, y
offset_points[:, 0] = numpy.add(offset_points[:, 0], -transform_x)
offset_points[:, 1] = numpy.add(offset_points[:, 1], -transform_y)
offset_shape_arr = ShapeArray.fromPolygon(offset_points, scale = scale)
hull_points = copy.deepcopy(hull_verts._points)
hull_points[:, 0] = numpy.add(hull_points[:, 0], -transform_x)
hull_points[:, 1] = numpy.add(hull_points[:, 1], -transform_y)
hull_shape_arr = ShapeArray.fromPolygon(hull_points, scale = scale) # x, y
return offset_shape_arr, hull_shape_arr
示例10: fromNode
# 需要导入模块: from UM.Math.Polygon import Polygon [as 别名]
# 或者: from UM.Math.Polygon.Polygon import approximatedCircle [as 别名]
def fromNode(cls, node, min_offset, scale = 0.5, include_children = False):
transform = node._transformation
transform_x = transform._data[0][3]
transform_y = transform._data[2][3]
hull_verts = node.callDecoration("getConvexHull")
# If a model is too small then it will not contain any points
if hull_verts is None or not hull_verts.getPoints().any():
return None, None
# For one_at_a_time printing you need the convex hull head.
hull_head_verts = node.callDecoration("getConvexHullHead") or hull_verts
if hull_head_verts is None:
hull_head_verts = Polygon()
# If the child-nodes are included, adjust convex hulls as well:
if include_children:
children = node.getAllChildren()
if not children is None:
for child in children:
# 'Inefficient' combination of convex hulls through known code rather than mess it up:
child_hull = child.callDecoration("getConvexHull")
if not child_hull is None:
hull_verts = hull_verts.unionConvexHulls(child_hull)
child_hull_head = child.callDecoration("getConvexHullHead") or child_hull
if not child_hull_head is None:
hull_head_verts = hull_head_verts.unionConvexHulls(child_hull_head)
offset_verts = hull_head_verts.getMinkowskiHull(Polygon.approximatedCircle(min_offset))
offset_points = copy.deepcopy(offset_verts._points) # x, y
offset_points[:, 0] = numpy.add(offset_points[:, 0], -transform_x)
offset_points[:, 1] = numpy.add(offset_points[:, 1], -transform_y)
offset_shape_arr = ShapeArray.fromPolygon(offset_points, scale = scale)
hull_points = copy.deepcopy(hull_verts._points)
hull_points[:, 0] = numpy.add(hull_points[:, 0], -transform_x)
hull_points[:, 1] = numpy.add(hull_points[:, 1], -transform_y)
hull_shape_arr = ShapeArray.fromPolygon(hull_points, scale = scale) # x, y
return offset_shape_arr, hull_shape_arr
示例11: _computeDisallowedAreasStatic
# 需要导入模块: from UM.Math.Polygon import Polygon [as 别名]
# 或者: from UM.Math.Polygon.Polygon import approximatedCircle [as 别名]
def _computeDisallowedAreasStatic(self, border_size, used_extruders):
#Convert disallowed areas to polygons and dilate them.
machine_disallowed_polygons = []
for area in self._global_container_stack.getProperty("machine_disallowed_areas", "value"):
polygon = Polygon(numpy.array(area, numpy.float32))
polygon = polygon.getMinkowskiHull(Polygon.approximatedCircle(border_size))
machine_disallowed_polygons.append(polygon)
result = {}
for extruder in used_extruders:
extruder_id = extruder.getId()
offset_x = extruder.getProperty("machine_nozzle_offset_x", "value")
if offset_x is None:
offset_x = 0
offset_y = extruder.getProperty("machine_nozzle_offset_y", "value")
if offset_y is None:
offset_y = 0
result[extruder_id] = []
for polygon in machine_disallowed_polygons:
result[extruder_id].append(polygon.translate(offset_x, offset_y)) #Compensate for the nozzle offset of this extruder.
#Add the border around the edge of the build volume.
left_unreachable_border = 0
right_unreachable_border = 0
top_unreachable_border = 0
bottom_unreachable_border = 0
#The build volume is defined as the union of the area that all extruders can reach, so we need to know the relative offset to all extruders.
for other_extruder in ExtruderManager.getInstance().getActiveExtruderStacks():
other_offset_x = other_extruder.getProperty("machine_nozzle_offset_x", "value")
other_offset_y = other_extruder.getProperty("machine_nozzle_offset_y", "value")
left_unreachable_border = min(left_unreachable_border, other_offset_x - offset_x)
right_unreachable_border = max(right_unreachable_border, other_offset_x - offset_x)
top_unreachable_border = min(top_unreachable_border, other_offset_y - offset_y)
bottom_unreachable_border = max(bottom_unreachable_border, other_offset_y - offset_y)
half_machine_width = self._global_container_stack.getProperty("machine_width", "value") / 2
half_machine_depth = self._global_container_stack.getProperty("machine_depth", "value") / 2
if self._shape != "elliptic":
if border_size - left_unreachable_border > 0:
result[extruder_id].append(Polygon(numpy.array([
[-half_machine_width, -half_machine_depth],
[-half_machine_width, half_machine_depth],
[-half_machine_width + border_size - left_unreachable_border, half_machine_depth - border_size - bottom_unreachable_border],
[-half_machine_width + border_size - left_unreachable_border, -half_machine_depth + border_size - top_unreachable_border]
], numpy.float32)))
if border_size + right_unreachable_border > 0:
result[extruder_id].append(Polygon(numpy.array([
[half_machine_width, half_machine_depth],
[half_machine_width, -half_machine_depth],
[half_machine_width - border_size - right_unreachable_border, -half_machine_depth + border_size - top_unreachable_border],
[half_machine_width - border_size - right_unreachable_border, half_machine_depth - border_size - bottom_unreachable_border]
], numpy.float32)))
if border_size + bottom_unreachable_border > 0:
result[extruder_id].append(Polygon(numpy.array([
[-half_machine_width, half_machine_depth],
[half_machine_width, half_machine_depth],
[half_machine_width - border_size - right_unreachable_border, half_machine_depth - border_size - bottom_unreachable_border],
[-half_machine_width + border_size - left_unreachable_border, half_machine_depth - border_size - bottom_unreachable_border]
], numpy.float32)))
if border_size - top_unreachable_border > 0:
result[extruder_id].append(Polygon(numpy.array([
[half_machine_width, -half_machine_depth],
[-half_machine_width, -half_machine_depth],
[-half_machine_width + border_size - left_unreachable_border, -half_machine_depth + border_size - top_unreachable_border],
[half_machine_width - border_size - right_unreachable_border, -half_machine_depth + border_size - top_unreachable_border]
], numpy.float32)))
else:
sections = 32
arc_vertex = [0, half_machine_depth - border_size]
for i in range(0, sections):
quadrant = math.floor(4 * i / sections)
vertices = []
if quadrant == 0:
vertices.append([-half_machine_width, half_machine_depth])
elif quadrant == 1:
vertices.append([-half_machine_width, -half_machine_depth])
elif quadrant == 2:
vertices.append([half_machine_width, -half_machine_depth])
elif quadrant == 3:
vertices.append([half_machine_width, half_machine_depth])
vertices.append(arc_vertex)
angle = 2 * math.pi * (i + 1) / sections
arc_vertex = [-(half_machine_width - border_size) * math.sin(angle), (half_machine_depth - border_size) * math.cos(angle)]
vertices.append(arc_vertex)
result[extruder_id].append(Polygon(numpy.array(vertices, numpy.float32)))
if border_size > 0:
result[extruder_id].append(Polygon(numpy.array([
[-half_machine_width, -half_machine_depth],
[-half_machine_width, half_machine_depth],
[-half_machine_width + border_size, 0]
], numpy.float32)))
result[extruder_id].append(Polygon(numpy.array([
[-half_machine_width, half_machine_depth],
[ half_machine_width, half_machine_depth],
[ 0, half_machine_depth - border_size]
], numpy.float32)))
#.........这里部分代码省略.........
示例12: _updateDisallowedAreas
# 需要导入模块: from UM.Math.Polygon import Polygon [as 别名]
# 或者: from UM.Math.Polygon.Polygon import approximatedCircle [as 别名]
def _updateDisallowedAreas(self):
if not self._global_container_stack:
return
self._error_areas = []
extruder_manager = ExtruderManager.getInstance()
used_extruders = extruder_manager.getUsedExtruderStacks()
disallowed_border_size = self._getEdgeDisallowedSize()
if not used_extruders:
# If no extruder is used, assume that the active extruder is used (else nothing is drawn)
if extruder_manager.getActiveExtruderStack():
used_extruders = [extruder_manager.getActiveExtruderStack()]
else:
used_extruders = [self._global_container_stack]
result_areas = self._computeDisallowedAreasStatic(disallowed_border_size, used_extruders) #Normal machine disallowed areas can always be added.
prime_areas = self._computeDisallowedAreasPrime(disallowed_border_size, used_extruders)
prime_disallowed_areas = self._computeDisallowedAreasStatic(0, used_extruders) #Where the priming is not allowed to happen. This is not added to the result, just for collision checking.
#Check if prime positions intersect with disallowed areas.
for extruder in used_extruders:
extruder_id = extruder.getId()
collision = False
for prime_polygon in prime_areas[extruder_id]:
for disallowed_polygon in prime_disallowed_areas[extruder_id]:
if prime_polygon.intersectsPolygon(disallowed_polygon) is not None:
collision = True
break
if collision:
break
#Also check other prime positions (without additional offset).
for other_extruder_id in prime_areas:
if extruder_id == other_extruder_id: #It is allowed to collide with itself.
continue
for other_prime_polygon in prime_areas[other_extruder_id]:
if prime_polygon.intersectsPolygon(other_prime_polygon):
collision = True
break
if collision:
break
if collision:
break
result_areas[extruder_id].extend(prime_areas[extruder_id])
nozzle_disallowed_areas = extruder.getProperty("nozzle_disallowed_areas", "value")
for area in nozzle_disallowed_areas:
polygon = Polygon(numpy.array(area, numpy.float32))
polygon = polygon.getMinkowskiHull(Polygon.approximatedCircle(disallowed_border_size))
result_areas[extruder_id].append(polygon) #Don't perform the offset on these.
# Add prime tower location as disallowed area.
prime_tower_collision = False
prime_tower_areas = self._computeDisallowedAreasPrinted(used_extruders)
for extruder_id in prime_tower_areas:
for prime_tower_area in prime_tower_areas[extruder_id]:
for area in result_areas[extruder_id]:
if prime_tower_area.intersectsPolygon(area) is not None:
prime_tower_collision = True
break
if prime_tower_collision: #Already found a collision.
break
if not prime_tower_collision:
result_areas[extruder_id].extend(prime_tower_areas[extruder_id])
else:
self._error_areas.extend(prime_tower_areas[extruder_id])
self._has_errors = len(self._error_areas) > 0
self._disallowed_areas = []
for extruder_id in result_areas:
self._disallowed_areas.extend(result_areas[extruder_id])
示例13: _computeDisallowedAreasStatic
# 需要导入模块: from UM.Math.Polygon import Polygon [as 别名]
# 或者: from UM.Math.Polygon.Polygon import approximatedCircle [as 别名]
def _computeDisallowedAreasStatic(self, border_size, used_extruders):
#Convert disallowed areas to polygons and dilate them.
machine_disallowed_polygons = []
for area in self._global_container_stack.getProperty("machine_disallowed_areas", "value"):
polygon = Polygon(numpy.array(area, numpy.float32))
polygon = polygon.getMinkowskiHull(Polygon.approximatedCircle(border_size))
machine_disallowed_polygons.append(polygon)
result = {}
for extruder in used_extruders:
extruder_id = extruder.getId()
offset_x = extruder.getProperty("machine_nozzle_offset_x", "value")
if offset_x is None:
offset_x = 0
offset_y = extruder.getProperty("machine_nozzle_offset_y", "value")
if offset_y is None:
offset_y = 0
result[extruder_id] = []
for polygon in machine_disallowed_polygons:
result[extruder_id].append(polygon.translate(offset_x, offset_y)) #Compensate for the nozzle offset of this extruder.
#Add the border around the edge of the build volume.
left_unreachable_border = 0
right_unreachable_border = 0
top_unreachable_border = 0
bottom_unreachable_border = 0
#The build volume is defined as the union of the area that all extruders can reach, so we need to know the relative offset to all extruders.
for other_extruder in ExtruderManager.getInstance().getActiveExtruderStacks():
other_offset_x = other_extruder.getProperty("machine_nozzle_offset_x", "value")
other_offset_y = other_extruder.getProperty("machine_nozzle_offset_y", "value")
left_unreachable_border = min(left_unreachable_border, other_offset_x - offset_x)
right_unreachable_border = max(right_unreachable_border, other_offset_x - offset_x)
top_unreachable_border = min(top_unreachable_border, other_offset_y - offset_y)
bottom_unreachable_border = max(bottom_unreachable_border, other_offset_y - offset_y)
half_machine_width = self._global_container_stack.getProperty("machine_width", "value") / 2
half_machine_depth = self._global_container_stack.getProperty("machine_depth", "value") / 2
if border_size - left_unreachable_border > 0:
result[extruder_id].append(Polygon(numpy.array([
[-half_machine_width, -half_machine_depth],
[-half_machine_width, half_machine_depth],
[-half_machine_width + border_size - left_unreachable_border, half_machine_depth - border_size - bottom_unreachable_border],
[-half_machine_width + border_size - left_unreachable_border, -half_machine_depth + border_size - top_unreachable_border]
], numpy.float32)))
if border_size + right_unreachable_border > 0:
result[extruder_id].append(Polygon(numpy.array([
[half_machine_width, half_machine_depth],
[half_machine_width, -half_machine_depth],
[half_machine_width - border_size - right_unreachable_border, -half_machine_depth + border_size - top_unreachable_border],
[half_machine_width - border_size - right_unreachable_border, half_machine_depth - border_size - bottom_unreachable_border]
], numpy.float32)))
if border_size + bottom_unreachable_border > 0:
result[extruder_id].append(Polygon(numpy.array([
[-half_machine_width, half_machine_depth],
[half_machine_width, half_machine_depth],
[half_machine_width - border_size - right_unreachable_border, half_machine_depth - border_size - bottom_unreachable_border],
[-half_machine_width + border_size - left_unreachable_border, half_machine_depth - border_size - bottom_unreachable_border]
], numpy.float32)))
if border_size - top_unreachable_border > 0:
result[extruder_id].append(Polygon(numpy.array([
[half_machine_width, -half_machine_depth],
[-half_machine_width, -half_machine_depth],
[-half_machine_width + border_size - left_unreachable_border, -half_machine_depth + border_size - top_unreachable_border],
[half_machine_width - border_size - right_unreachable_border, -half_machine_depth + border_size - top_unreachable_border]
], numpy.float32)))
return result