本文整理汇总了Python中TAMO.seq.Fasta.seqs方法的典型用法代码示例。如果您正苦于以下问题:Python Fasta.seqs方法的具体用法?Python Fasta.seqs怎么用?Python Fasta.seqs使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类TAMO.seq.Fasta
的用法示例。
在下文中一共展示了Fasta.seqs方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: info2seeds
# 需要导入模块: from TAMO.seq import Fasta [as 别名]
# 或者: from TAMO.seq.Fasta import seqs [as 别名]
def info2seeds(N,infofile,probefile,species='YEAST'):
G = ProbeSet(species)
IDs = G.ids_from_file(probefile)
Q = EM.theMarkovBackground.zeroth()
seqs = Fasta.seqs(infofile)
if not N:
nmers = seqs
else:
nmers= MotifTools.top_nmers(N,seqs)
if len(nmers) > 1000: nmers = nmers[0:1000]
print "Scoring enrichment of %d nmers from %s"%len(nmers,infofile)
sys.stdout.flush()
nmers_scoresT = []
for nmer in nmers:
if nmer.isalpha():
p = G.p_value(nmer,IDs,'') #'verbose'
nmers_scoresT.append((nmer,p))
nmers_scoresT.sort(lambda x,y: cmp(x[1],y[1]))
last = min(20,len(nmers_scoresT))
models = []
for i in range(last):
seq = nmers_scoresT[i][0]
m = MotifTools.Motif('',Q)
m.compute_from_text(seq,0.1)
models.append(m)
for tup in nmers_scoresT[0:40]:
print tup
return(models)
示例2: __init__
# 需要导入模块: from TAMO.seq import Fasta [as 别名]
# 或者: from TAMO.seq.Fasta import seqs [as 别名]
def __init__(self,species='YEAST',seqs=''):
if seqs:
self.sourcefile = 'Runtime (%d sequences)'%len(seqs)
elif species.find('.6MBG') >= 0:
self.sourcefile = species
elif species[0:5] == 'YEAST':
self.sourcefile = TAMO.paths.Whiteheaddir+'Yeast6kArray/yeast.intergenic.6.freq'
TAMO.paths.CHECK(self.sourcefile,'Whitehead')
elif species[0:5] == 'HUMAN':
self.sourcefile = TAMO.paths.Whiteheaddir+'Human13kArray/human_elongated_probbesQC250.6MBG'
TAMO.paths.CHECK(self.sourcefile,'Whitehead')
elif os.path.exists(re.sub('.fsa|.fasta','.6MBG',species)):
self.sourcefile = re.sub('.fsa|.fasta','.6MBG',species)
elif os.path.exists(species) and (species.find('.fsa') >=0):
self.sourcefile = species
print "EM.MarkovBackground: Computing background from %s"%species
sys.stdout.flush()
self.freqs_from_seqs(Fasta.seqs(species))
#elif os.path.exists(species):
# self.sourcefile = species
else:
print 'EM.MarkovBackground: Unknown species %s, using Yeast'
self.sourcefile = TAMO.paths.Whiteheaddir+'Yeast6kArray/yeast.intergenic.6.freq'
TAMO.paths.CHECK(self.sourcefile,'Whitehead')
self.species = species
self.D = {}
self.F = {} #Frequencies
self.CP = {} #log2(Conditional Probabilities) CP['ACTG'] = p( G | ACT )
self.nmers_by_size = map(lambda x:[],range(0,10))
self.highestorder = 0
if seqs:
print "EM.MarkovBackground: Computing background from %d sequences"%len(seqs)
self.freq_from_seqs(seqs)
else:
self.freq_from_file()
self.compute_conditional()
self.totD = {}
示例3: range
# 需要导入模块: from TAMO.seq import Fasta [as 别名]
# 或者: from TAMO.seq.Fasta import seqs [as 别名]
from TAMO import MotifTools
from TAMO.seq import Fasta
from TAMO import MotifMetrics
from TAMO.MD.AlignAce import AlignAce
from TAMO.MD.MDscan import MDscan
from TAMO.MD.Meme import Meme
from TAMO import Clustering
#from TAMO.DataSources import GO
from time import time
TC8_path = '/Users/biggus/Documents/James/Data/ClusterDefs/TC-Fastas/TC-8.fas'
TC8_ids = Fasta.ids(TC8_path)
TC8_seqs = Fasta.seqs(TC8_path)
allSeqs = MotifMetrics.ProbeSet('/Users/biggus/Documents/James/Data/2KB/2kb_Sequence/2kb_Anopheles/2KBupTSS_goodAffyAGAPsFastasOUT.masked.nr.fas')
outFile = '/Users/biggus/Documents/James/Data/ClusterDefs/TC-8_MotifMetrics.5-12.txt'
roughBestKmers = []
for i in range(6,10):
imers = MotifMetrics.top_nmers_seqs(i,TC8_seqs)
roughBestKmers.extend(imers)
print '%s %smers found.' % (len(imers), i)
kmerMetrics = ['Kmer\thGeoPval\tBinomOverRep\n']
for kmer in roughBestKmers:
hGeoPval = allSeqs.Enrichment(kmer, TC8_ids)
binom = allSeqs.overrep(kmer,TC8_ids)
kmerMetrics.append('%s\t%s\t%s\n' % (kmer,hGeoPval,binom))