本文整理汇总了Python中OCO_Matrix.OCO_Matrix.header['scaling_equation']方法的典型用法代码示例。如果您正苦于以下问题:Python OCO_Matrix.header['scaling_equation']方法的具体用法?Python OCO_Matrix.header['scaling_equation']怎么用?Python OCO_Matrix.header['scaling_equation']使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类OCO_Matrix.OCO_Matrix
的用法示例。
在下文中一共展示了OCO_Matrix.header['scaling_equation']方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: create_scene_dispersion_file
# 需要导入模块: from OCO_Matrix import OCO_Matrix [as 别名]
# 或者: from OCO_Matrix.OCO_Matrix import header['scaling_equation'] [as 别名]
#.........这里部分代码省略.........
# Create aband dispersion array, 1 indexed
abo2_dcoef_0, abo2_dcoef_1 = dispersion_coefs[0, :]
aband_disp = numpy.arange(1, len(aband_data)+1)*abo2_dcoef_1 + abo2_dcoef_0
# (2) CONSTRUCT THE X, Y FUNCTION TO FIT
#
# Use intersection of the points above and below range threshold
# Make sure to sort the resulting indexes since set.intersection
# does not guarantee anything about ordering
w_1 = numpy.where(aband_disp >= ABAND_DISP_SEARCH_RANGE[0])
w_2 = numpy.where(aband_disp <= ABAND_DISP_SEARCH_RANGE[1])
w = sorted(list(set.intersection(set(w_1[0]), set(w_2[0]))))
if len(w) == 0:
raise ValueError('Could not find any points in the range %s in the aband dispersion with range %s for sounding %s' % (ABAND_DISP_SEARCH_RANGE, (min(aband_disp), max(aband_disp)), sounding_id))
x = aband_disp[w] - wn_s
mxmeas = max(aband_data[w]) # maximum value
m2 = max(mxmeas - aband_data[w])
y = (mxmeas-aband_data[w])/m2 # this should look like a gaussian
w = numpy.where(y < 0.1)
y = y - numpy.mean(y[w]) # subtract off the "continuum"
pos = numpy.argmax(y) # pos = index of the maximum value of y
m = len(y)
fg = -x[pos] # first-guess value of spectral shift
# (3) PERFORM A SIMPLE FIT ASSUMING A PERFECTLY LINEAR MODEL
# MODEL IS A GAUSSIAN WITH SIGMA=0.2 CM^-1
# FIT PARAMETERS ARE AMPLITUDE AND CENTER OF THE GAUSSIAN
K = numpy.zeros((m, 2), dtype=float) # will hold jacobian
sig2 = 0.2e0**2
ygauss = numpy.exp(-(x+fg)**2/ (2.0*sig2))
K[:, 0] = ygauss
K[:, 1] = -ygauss / sig2 * (x+fg)
Kt = numpy.transpose(K)
# Note that KtK is a 2x2 symmetric matrix and can be inverted analytically if desired.
# form matrix (Kt K)^{-1} Kt
delta = numpy.dot(numpy.linalg.inv(numpy.dot(Kt, K)), (numpy.dot(Kt, (y-ygauss))))
fit = [1.0, fg] + delta
wn_shift = fit[1]
# Debugging to make sure fitting works
if (0):
from matplotlib import pyplot
print sounding_id, aband_disp[0], wn_shift, aband_disp[0]-aband_disp[1]
pyplot.cla()
pyplot.plot(x, y) # measured data
yfit = fit[0]* numpy.exp(-(x+fit[1])**2/ (2.0*sig2))
pyplot.plot(x,yfit) # fit modeled data
pyplot.legend(('Measured Solar Line', 'Fitted Solar Line'), loc='lower left')
pyplot.savefig(os.path.join(os.path.basename(apriori_out_file), 'disp_fit_%s.png' % sounding_id), format='png')
disp_obj = OCO_Matrix()
disp_obj.data = numpy.zeros((dispersion_coefs.shape[1], dispersion_coefs.shape[0]+1), dtype=float)
# First column is index of parameter
disp_obj.data[:, 0] = numpy.arange(1,dispersion_coefs.shape[1]+1)
# Create dispersion file scaling non aband values according to this method:
# Where below wn_spc is the spacing, ie second coefficient
# wco2 offset : delta_2 = 0.48 * ( delta_1 + wn_spc) - wn_spc)
# sco2_offset : delta_3 = 0.38 * ( delta_1 + wn_spc) - wn_spc)
disp_offsets = []
for band_idx, band_scaling in enumerate(DISPERSION_OFFSET_SCALING):
# Assuming 2 coefficients for describing dispersion for GOSAT
# Since we need both to do modifcation to offset
band_wn_start, band_spacing = dispersion_coefs[band_idx, :]
# Use a different equation for l1b builds before v02.04.06
if (l1b_build_id != None and (0,0,0) > l1b_build_id < (2,4,6)) or (index_scheme != None and index_scheme == 0):
# For 0 based indexing in L1B file
disp_obj.header['scaling_equation'] = '"0 based indexing"'
curr_offset = DISPERSION_OFFSET_SCALING[band_idx] * (wn_shift - band_spacing) + band_spacing
else:
# For 1 based indexing in L1B file
disp_obj.header['scaling_equation'] = '"1 based indexing"'
curr_offset = DISPERSION_OFFSET_SCALING[band_idx] * wn_shift
disp_offsets.append(curr_offset)
# First column is index of parameter
disp_obj.data[0, band_idx+1] = band_wn_start + curr_offset
disp_obj.data[1, band_idx+1] = band_spacing
disp_obj.header['offsets'] = disp_offsets
disp_obj.header['solar_doppler_velocity'] = solar_doppler_velocity
disp_obj.labels = DISPERSION_LABELS
disp_obj.file_id = 'Dispersion apriori for: %s' % sounding_id
disp_obj.write(apriori_out_file)