本文整理汇总了Python中OCO_Matrix.OCO_Matrix.data[1,band_idx+1]方法的典型用法代码示例。如果您正苦于以下问题:Python OCO_Matrix.data[1,band_idx+1]方法的具体用法?Python OCO_Matrix.data[1,band_idx+1]怎么用?Python OCO_Matrix.data[1,band_idx+1]使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类OCO_Matrix.OCO_Matrix
的用法示例。
在下文中一共展示了OCO_Matrix.data[1,band_idx+1]方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: create_scene_dispersion_file
# 需要导入模块: from OCO_Matrix import OCO_Matrix [as 别名]
# 或者: from OCO_Matrix.OCO_Matrix import data[1,band_idx+1] [as 别名]
def create_scene_dispersion_file(sounding_id, latitude, sza_r, saz_r, time_struct, aband_data, dispersion_coefs, apriori_out_file, l1b_build_id=None, index_scheme=None):
"""
Purpose: Given a single frame of gosat data, estimate the spectral shift in band 1P.
This is accomplished by using the strong solar line at 12985.163 wavenumbers.
This is in the a-band continuum and is really the only local feature there.
Note: This routine fits for a global shift, which INCLUDES the instrument
doppler shift. If this is not desired, the user must subtract off
the instrument doppler shift.
Original Author: Chris Odell
Converted from IDL
"""
if type(sounding_id) is str:
pol_name = sounding_id[-1]
if pol_name not in ACOS_File.GOSAT_POL_ORDER:
# If not P or S then use averaged offset
pol_name = 'averaged'
else:
raise Exception('Can not determine polarization name from non string ;Asounding id: %s' % sounding_id)
wn_s0 = ABAND_SOLAR_LINE
wn_s0 += ABAND_ILS_OFFSET[pol_name] # account for different ILS offset P vs S
# Calculate the Speed of Earth center towards sun
frac = (time_struct.tm_hour + time_struct.tm_min/60. + time_struct.tm_sec/3600.)/24. # fraction of a day
doy = time_struct.tm_yday + frac + 0.5 # why 0.5? well cause L2 code does that
V_cen = 497.2 * math.sin((doy-4.1)/365.25*2*math.pi) # simple approximate model, good to ~ 10 m/s.
# Calculate the rotational component of the solar doppler velocity
geo_lat = math.atan(math.tan(math.radians(latitude))/(1.+CON))
Rloc = 1000.0 * RADIUS/math.sqrt(1.+ CON*math.sin(geo_lat)**2)
V_rot = -EARTH_ROT_SPD * Rloc * math.sin(sza_r) * math.cos(saz_r-math.radians(90.)) * math.cos(geo_lat)
solar_doppler_velocity = V_cen + V_rot
# Modify position of strong solar line to include solar doppler shift
wn_s = wn_s0 * (1.0e0 - solar_doppler_velocity/constants.c) # takes into account the solar doppler shift
# Not used but could be good for debugging?
#solar_shift = wn_s - wn_s0
# Create aband dispersion array, 1 indexed
abo2_dcoef_0, abo2_dcoef_1 = dispersion_coefs[0, :]
aband_disp = numpy.arange(1, len(aband_data)+1)*abo2_dcoef_1 + abo2_dcoef_0
# (2) CONSTRUCT THE X, Y FUNCTION TO FIT
#
# Use intersection of the points above and below range threshold
# Make sure to sort the resulting indexes since set.intersection
# does not guarantee anything about ordering
w_1 = numpy.where(aband_disp >= ABAND_DISP_SEARCH_RANGE[0])
w_2 = numpy.where(aband_disp <= ABAND_DISP_SEARCH_RANGE[1])
w = sorted(list(set.intersection(set(w_1[0]), set(w_2[0]))))
if len(w) == 0:
raise ValueError('Could not find any points in the range %s in the aband dispersion with range %s for sounding %s' % (ABAND_DISP_SEARCH_RANGE, (min(aband_disp), max(aband_disp)), sounding_id))
x = aband_disp[w] - wn_s
mxmeas = max(aband_data[w]) # maximum value
m2 = max(mxmeas - aband_data[w])
y = (mxmeas-aband_data[w])/m2 # this should look like a gaussian
w = numpy.where(y < 0.1)
y = y - numpy.mean(y[w]) # subtract off the "continuum"
pos = numpy.argmax(y) # pos = index of the maximum value of y
m = len(y)
fg = -x[pos] # first-guess value of spectral shift
# (3) PERFORM A SIMPLE FIT ASSUMING A PERFECTLY LINEAR MODEL
# MODEL IS A GAUSSIAN WITH SIGMA=0.2 CM^-1
# FIT PARAMETERS ARE AMPLITUDE AND CENTER OF THE GAUSSIAN
K = numpy.zeros((m, 2), dtype=float) # will hold jacobian
sig2 = 0.2e0**2
ygauss = numpy.exp(-(x+fg)**2/ (2.0*sig2))
K[:, 0] = ygauss
K[:, 1] = -ygauss / sig2 * (x+fg)
Kt = numpy.transpose(K)
# Note that KtK is a 2x2 symmetric matrix and can be inverted analytically if desired.
# form matrix (Kt K)^{-1} Kt
delta = numpy.dot(numpy.linalg.inv(numpy.dot(Kt, K)), (numpy.dot(Kt, (y-ygauss))))
fit = [1.0, fg] + delta
wn_shift = fit[1]
# Debugging to make sure fitting works
if (0):
from matplotlib import pyplot
print sounding_id, aband_disp[0], wn_shift, aband_disp[0]-aband_disp[1]
pyplot.cla()
pyplot.plot(x, y) # measured data
yfit = fit[0]* numpy.exp(-(x+fit[1])**2/ (2.0*sig2))
pyplot.plot(x,yfit) # fit modeled data
pyplot.legend(('Measured Solar Line', 'Fitted Solar Line'), loc='lower left')
#.........这里部分代码省略.........