本文整理汇总了Python中LogisticRegression.LogisticRegression.get_cost_updates方法的典型用法代码示例。如果您正苦于以下问题:Python LogisticRegression.get_cost_updates方法的具体用法?Python LogisticRegression.get_cost_updates怎么用?Python LogisticRegression.get_cost_updates使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类LogisticRegression.LogisticRegression
的用法示例。
在下文中一共展示了LogisticRegression.get_cost_updates方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: LogisticRegression_demo
# 需要导入模块: from LogisticRegression import LogisticRegression [as 别名]
# 或者: from LogisticRegression.LogisticRegression import get_cost_updates [as 别名]
def LogisticRegression_demo(learning_rate=0.13, n_epochs=1000, dataset='mnist.pkl.gz', batch_size=600):
datasets = load_multi()
train_set_x, train_set_y = datasets[0]
valid_set_x, valid_set_y = datasets[1]
test_set_x, test_set_y = datasets[2]
n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size
n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] / batch_size
n_test_batches = test_set_x.get_value(borrow=True).shape[0] / batch_size
print '... building the model'
index = T.lscalar()
x = T.matrix('x')
y = T.ivector('y')
classifier = LogisticRegression(x, y, n_in=103, n_out=9)
test_model = theano.function(inputs=[index],
outputs=classifier.errors(),
givens={x: test_set_x[index * batch_size: (index + 1) * batch_size],
y: test_set_y[index * batch_size: (index + 1) * batch_size]})
validate_model = theano.function(inputs=[index],
outputs=classifier.errors(),
givens={x: valid_set_x[index * batch_size:(index + 1) * batch_size],
y: valid_set_y[index * batch_size:(index + 1) * batch_size]})
cost, updates = classifier.get_cost_updates(learning_rate=learning_rate)
train_model = theano.function(inputs=[index],
outputs=cost,
updates=updates,
givens={x: train_set_x[index * batch_size:(index + 1) * batch_size],
y: train_set_y[index * batch_size:(index + 1) * batch_size]})
print '... training the model'
patience = 5000
patience_increase = 2
improvement_threshold = 0.995
validation_frequency = min(n_train_batches, patience / 2)
best_validation_loss = numpy.inf
test_score = 0.
start_time = time.clock()
done_looping = False
epoch = 0
while (epoch < n_epochs) and (not done_looping):
epoch = epoch + 1
for minibatch_index in xrange(n_train_batches):
train_model(minibatch_index)
iter = (epoch - 1) * n_train_batches + minibatch_index
if (iter + 1) % validation_frequency == 0:
validation_losses = [validate_model(i)
for i in xrange(n_valid_batches)]
this_validation_loss = numpy.mean(validation_losses)
print('epoch %i, minibatch %i/%i, validation error %f %%' % \
(epoch, minibatch_index + 1, n_train_batches,
this_validation_loss * 100.))
if this_validation_loss < best_validation_loss:
if this_validation_loss < best_validation_loss * \
improvement_threshold:
patience = max(patience, iter * patience_increase)
best_validation_loss = this_validation_loss
test_losses = [test_model(i)
for i in xrange(n_test_batches)]
test_score = numpy.mean(test_losses)
print((' epoch %i, minibatch %i/%i, test error of best'
' model %f %%') %
(epoch, minibatch_index + 1, n_train_batches,
test_score * 100.))
if patience <= iter:
done_looping = True
break
end_time = time.clock()
print(('Optimization complete with best validation score of %f %%,'
'with test performance %f %%') %
(best_validation_loss * 100., test_score * 100.))
print 'The code run for %d epochs, with %f epochs/sec' % (
epoch, 1. * epoch / (end_time - start_time))
print >> sys.stderr, ('The code for file ' +
os.path.split(__file__)[1] +
' ran for %.1fs' % ((end_time - start_time)))