当前位置: 首页>>代码示例>>Python>>正文


Python LogisticRegression.getProbs方法代码示例

本文整理汇总了Python中LogisticRegression.LogisticRegression.getProbs方法的典型用法代码示例。如果您正苦于以下问题:Python LogisticRegression.getProbs方法的具体用法?Python LogisticRegression.getProbs怎么用?Python LogisticRegression.getProbs使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在LogisticRegression.LogisticRegression的用法示例。


在下文中一共展示了LogisticRegression.getProbs方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from LogisticRegression import LogisticRegression [as 别名]
# 或者: from LogisticRegression.LogisticRegression import getProbs [as 别名]
    def __init__(self, stateIn, deepOut = False):
        global pickle

        print("  Loading previous state ...")
        if stateIn.endswith('gz'):
            f = gzip.open(stateIn,'rb')
        else:
            f = open(stateIn, 'r')
        state_name = pickle.load(f)
        state = state_name[0]
        self.names = state_name[1]
        convValues = state.convValues
        w0 = convValues[0][0]
        b0 = convValues[0][1]
        w1 = convValues[1][0]
        b1 = convValues[1][1]
        hiddenVals = state.hiddenValues
        wHidden = hiddenVals[0]
        bHidden = hiddenVals[1]
        logRegValues = state.logRegValues
        wLogReg = logRegValues[0]
        bLogReg = logRegValues[1]
        topo = state.topoplogy
        nkerns = topo.nkerns
        n_out = len(self.names)
        assert(n_out == np.shape(wLogReg)[1])

        print("  Some Values ...")
        print("     Number of Kernels : " + str(nkerns))
        print("     First Kernel w0[0][0] :\n" + str(w0[0][0]))
        print("     bHidden :\n" + str(bHidden))
        print("     bLogReg :\n" + str(bLogReg))
        print("  Building the theano model")
        batch_size = 1

        x = T.matrix('x')   # the data is presented as rasterized images
        layer0_input = x.reshape((batch_size, 1, topo.ishape[0], topo.ishape[1]))
        rng = np.random.RandomState(23455)

        layer0 = LeNetConvPoolLayer(None, input=layer0_input,
                                image_shape=(batch_size, 1, topo.ishape[0],  topo.ishape[0]),
                                filter_shape=(nkerns[0], 1, topo.filter_1, topo.filter_1),
                                poolsize=(topo.pool_1, topo.pool_1), wOld=w0, bOld=b0, deepOut=deepOut)


        layer1 = LeNetConvPoolLayer(None, input=layer0.output,
                                    image_shape=(batch_size, nkerns[0], topo.in_2, topo.in_2),
                                    filter_shape=(nkerns[1], nkerns[0], topo.filter_2, topo.filter_2),
                                    poolsize=(topo.pool_2, topo.pool_2), wOld=w1, bOld=b1, deepOut=deepOut)

        layer2_input = layer1.output.flatten(2)

        layer2 = HiddenLayer(None, input=layer2_input, n_in=nkerns[1] * topo.hidden_input,
                             n_out=topo.numLogisticInput, activation=T.tanh, Wold = wHidden, bOld = bHidden)

        # classify the values of the fully-connected sigmoidal layer
        layer3 = LogisticRegression(input=layer2.output, n_in=topo.numLogisticInput, n_out=n_out, Wold = wLogReg, bOld=bLogReg )

        # create a function to compute the mistakes that are made by the model
        # index = T.lscalar()
        # test_model = theano.function([index], layer3.getProbs(),
        #                              givens={x: test_set_x[index * batch_size: (index + 1) * batch_size]})

        self.predict_model = theano.function([x], layer3.getProbs())

        if (deepOut):
            self.layer0_out = theano.function([x], layer0.output)
            self.layer0_conv= theano.function([x], layer0.conv_out)
            self.layer1_conv= theano.function([x], layer1.conv_out)
            self.layer1_out = theano.function([x], layer1.output)
            self.b0 = b0
            self.b1 = b1
            self.w0 = w0
            self.w1 = w1
开发者ID:asez73,项目名称:dl-playground,代码行数:76,代码来源:LeNetPredictor.py

示例2: evaluate_lenet5

# 需要导入模块: from LogisticRegression import LogisticRegression [as 别名]
# 或者: from LogisticRegression.LogisticRegression import getProbs [as 别名]

#.........这里部分代码省略.........
    # paper_14 again 0.02 dropout
    # paper_15 again no dropout

    layer2 = HiddenLayer(rng, input=layer2_input, n_in=topo.nkerns[1] * topo.hidden_input,
                         n_out=topo.numLogisticInput, activation=T.tanh, Wold = wHidden, bOld = bHidden)

    # classify the values of the fully-connected sigmoidal layer
    layer3 = LogisticRegression(input=layer2.output, n_in=topo.numLogisticInput, n_out=n_out, Wold = wLogReg, bOld=bLogReg )

    # Some regularisation (not for the conv-Kernels)
    L2_sqr = (layer2.W ** 2).sum() + (layer3.W ** 2).sum()

    # the cost we minimize during training is the NLL of the model
    cost = layer3.negative_log_likelihood(y) + 0.001 * L2_sqr

    # create a function to compute the mistakes that are made by the model
    test_model = theano.function([index], layer3.errors(y),
                                 givens={
                                     x: test_set_x[index * batch_size: (index + 1) * batch_size],
                                     y: test_set_y[index * batch_size: (index + 1) * batch_size]})

    # Functions for statistics
    test_logloss = theano.function([index], cost,
                                      givens={
                                          x: test_set_x[index * batch_size: (index + 1) * batch_size],
                                          y: test_set_y[index * batch_size: (index + 1) * batch_size]})

    validate_logloss = theano.function([index], cost,
                                     givens={
                                         x: valid_set_x[index * batch_size: (index + 1) * batch_size],
                                         y: valid_set_y[index * batch_size: (index + 1) * batch_size]})


    test_probs_fct = theano.function([index], layer3.getProbs(),
                                 givens={
                                     x: test_set_x[index * batch_size: (index + 1) * batch_size]})

    validate_model = theano.function([index], layer3.errors(y),
                                     givens={
                                         x: valid_set_x[index * batch_size: (index + 1) * batch_size],
                                         y: valid_set_y[index * batch_size: (index + 1) * batch_size]})

    # create a list of all model parameters to be fit by gradient descent
    params = layer3.params + layer2.params + layer1.params + layer0.params

    # create a list of gradients for all model parameters
    grads = T.grad(cost, params)

    # train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i],grads[i]) pairs.
    updates = []
    for param_i, grad_i in zip(params, grads):
        updates.append((param_i, param_i - learning_rate * grad_i))



    ###############
    # TRAIN MODEL #
    ###############
    print '... training'
    # early-stopping parameters
    patience = 10000 # look as this many examples regardless
    patience_increase = 2  # wait this much longer when a new best is
开发者ID:asez73,项目名称:dl-playground,代码行数:70,代码来源:convolutional_mlp_plankton.py


注:本文中的LogisticRegression.LogisticRegression.getProbs方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。