本文整理汇总了Python中Base.Base.phi方法的典型用法代码示例。如果您正苦于以下问题:Python Base.phi方法的具体用法?Python Base.phi怎么用?Python Base.phi使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Base.Base
的用法示例。
在下文中一共展示了Base.phi方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from Base import Base [as 别名]
# 或者: from Base.Base import phi [as 别名]
class GD:
#Galerkin discontinu
def __init__(self,ordre,a,b,N):
#param
self.ordre = ordre
self.a = a
self.b = b
self.N = N
#discretisation du segment
self.ak = linspace(self.a,self.b,self.N+1)
#points et poids d'interpolations Gauss Legendre
leg = Legendre(self.ordre)
self.coord = leg.coord()
self.weight = leg.weight()
#Integration et bijection sur les mailles
self.integ = Integration(self.ordre)
#fcts de base
self.base = Base(self.ordre)
#calcul de phi aux interfaces
self.phid = self.base.phi(1)
self.phig = self.base.phi(-1)
#calcul de phip sur les points d'interpolation
self.dphi = zeros((self.ordre,self.ordre))
for j in range(self.ordre):
self.dphi[:,j] = self.base.phip(self.coord[j])
#condition au bord a
def Wexact0(self):
we = zeros((2,1))
return we
#condition au bord b
def WexactN(self):
we = zeros((2,1))
return we
#Calcul de la derivee sptatiale av ec le schema GD
def dW(self,W):
dW = zeros((2,self.N,self.ordre))
for k in range(self.N):
Lk = self.ak[k+1] - self.ak[k]
flux = dot(self.flux(k,W),self.phig.T)-dot(self.flux(k+1,W),self.phid.T)
for i in range(self.ordre):
#dot(A,W) est fait directement car integral ne fait que du calcul 1D
dW[0,k,i]+=self.integ.integral(-W[1,k]*self.dphi[i]*2./Lk, self.ak[k], self.ak[k+1])+flux[0,i]
dW[1,k,i]+=self.integ.integral(-W[0,k]*self.dphi[i]*2./Lk, self.ak[k], self.ak[k+1])+flux[1,i]
dW[0,k,i] *= 2./Lk/self.weight[i]
dW[1,k,i] *= 2./Lk/self.weight[i]
return dW
#flux a l'interface k
def flux(self,k,W):
if(k==0):
Wk = self.Wexact0()
Wkp1 = dot(W[:,k],self.phig)
else:
if(k==self.N):
Wk = dot(W[:,k-1],self.phid)
Wkp1 = self.WexactN()
else:
Wk = dot(W[:,k-1],self.phid)
Wkp1 = dot(W[:,k],self.phig)
return self.F(Wk, Wkp1)
#flux numerique
def F(self,Wk,Wkp1):
Amoins = array([[-0.5,-0.5],[-0.5,-0.5]])
Aplus = array([[0.5,-0.5],[-0.5,0.5]])
return dot(Aplus,Wk) + dot(Amoins,Wkp1)
#formate les valeurs en x pour l'affichage
def getX(self):
formatX=zeros((self.N*self.ordre))
for i in range(self.N):
for j in range(self.ordre):
formatX[i*(self.ordre)+j]= self.integ.Gk(self.coord[j],self.ak[i],self.ak[i+1])
return formatX
#formate les valeurs en y pour l'affichage
def getY(self,W):
formatY=zeros((2,self.N*self.ordre))
for v in range(2):
for i in range(self.N):
for j in range(self.ordre):
formatY[v,i*(self.ordre)+j]=W[v,i,j]
return formatY