本文整理汇总了Java中org.apache.flink.streaming.api.environment.StreamExecutionEnvironment.getConfig方法的典型用法代码示例。如果您正苦于以下问题:Java StreamExecutionEnvironment.getConfig方法的具体用法?Java StreamExecutionEnvironment.getConfig怎么用?Java StreamExecutionEnvironment.getConfig使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.flink.streaming.api.environment.StreamExecutionEnvironment
的用法示例。
在下文中一共展示了StreamExecutionEnvironment.getConfig方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: runKeyValueTest
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
public void runKeyValueTest() throws Exception {
final String topic = "keyvaluetest";
createTestTopic(topic, 1, 1);
final int elementCount = 5000;
// ----------- Write some data into Kafka -------------------
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
env.setRestartStrategy(RestartStrategies.noRestart());
env.getConfig().disableSysoutLogging();
DataStream<Tuple2<Long, PojoValue>> kvStream = env.addSource(new SourceFunction<Tuple2<Long, PojoValue>>() {
@Override
public void run(SourceContext<Tuple2<Long, PojoValue>> ctx) throws Exception {
Random rnd = new Random(1337);
for (long i = 0; i < elementCount; i++) {
PojoValue pojo = new PojoValue();
pojo.when = new Date(rnd.nextLong());
pojo.lon = rnd.nextLong();
pojo.lat = i;
// make every second key null to ensure proper "null" serialization
Long key = (i % 2 == 0) ? null : i;
ctx.collect(new Tuple2<>(key, pojo));
}
}
@Override
public void cancel() {
}
});
KeyedSerializationSchema<Tuple2<Long, PojoValue>> schema = new TypeInformationKeyValueSerializationSchema<>(Long.class, PojoValue.class, env.getConfig());
Properties producerProperties = FlinkKafkaProducerBase.getPropertiesFromBrokerList(brokerConnectionStrings);
producerProperties.setProperty("retries", "3");
kafkaServer.produceIntoKafka(kvStream, topic, schema, producerProperties, null);
env.execute("Write KV to Kafka");
// ----------- Read the data again -------------------
env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
env.setRestartStrategy(RestartStrategies.noRestart());
env.getConfig().disableSysoutLogging();
KeyedDeserializationSchema<Tuple2<Long, PojoValue>> readSchema = new TypeInformationKeyValueSerializationSchema<>(Long.class, PojoValue.class, env.getConfig());
Properties props = new Properties();
props.putAll(standardProps);
props.putAll(secureProps);
DataStream<Tuple2<Long, PojoValue>> fromKafka = env.addSource(kafkaServer.getConsumer(topic, readSchema, props));
fromKafka.flatMap(new RichFlatMapFunction<Tuple2<Long, PojoValue>, Object>() {
long counter = 0;
@Override
public void flatMap(Tuple2<Long, PojoValue> value, Collector<Object> out) throws Exception {
// the elements should be in order.
Assert.assertTrue("Wrong value " + value.f1.lat, value.f1.lat == counter);
if (value.f1.lat % 2 == 0) {
assertNull("key was not null", value.f0);
} else {
Assert.assertTrue("Wrong value " + value.f0, value.f0 == counter);
}
counter++;
if (counter == elementCount) {
// we got the right number of elements
throw new SuccessException();
}
}
});
tryExecute(env, "Read KV from Kafka");
deleteTestTopic(topic);
}
示例2: StreamGraph
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
public StreamGraph(StreamExecutionEnvironment environment) {
this.environment = environment;
this.executionConfig = environment.getConfig();
this.checkpointConfig = environment.getCheckpointConfig();
// create an empty new stream graph.
clear();
}
示例3: runAllDeletesTest
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
/**
* Test delete behavior and metrics for producer.
* @throws Exception
*/
public void runAllDeletesTest() throws Exception {
final String topic = "alldeletestest";
createTestTopic(topic, 1, 1);
final int elementCount = 300;
// ----------- Write some data into Kafka -------------------
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
env.getConfig().setRestartStrategy(RestartStrategies.noRestart());
env.getConfig().disableSysoutLogging();
DataStream<Tuple2<byte[], PojoValue>> kvStream = env.addSource(new SourceFunction<Tuple2<byte[], PojoValue>>() {
@Override
public void run(SourceContext<Tuple2<byte[], PojoValue>> ctx) throws Exception {
Random rnd = new Random(1337);
for (long i = 0; i < elementCount; i++) {
final byte[] key = new byte[200];
rnd.nextBytes(key);
ctx.collect(new Tuple2<>(key, (PojoValue) null));
}
}
@Override
public void cancel() {
}
});
TypeInformationKeyValueSerializationSchema<byte[], PojoValue> schema = new TypeInformationKeyValueSerializationSchema<>(byte[].class, PojoValue.class, env.getConfig());
Properties producerProperties = FlinkKafkaProducerBase.getPropertiesFromBrokerList(brokerConnectionStrings);
producerProperties.setProperty("retries", "3");
producerProperties.putAll(secureProps);
kafkaServer.produceIntoKafka(kvStream, topic, schema, producerProperties, null);
env.execute("Write deletes to Kafka");
// ----------- Read the data again -------------------
env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
env.getConfig().setRestartStrategy(RestartStrategies.noRestart());
env.getConfig().disableSysoutLogging();
Properties props = new Properties();
props.putAll(standardProps);
props.putAll(secureProps);
DataStream<Tuple2<byte[], PojoValue>> fromKafka = env.addSource(kafkaServer.getConsumer(topic, schema, props));
fromKafka.flatMap(new RichFlatMapFunction<Tuple2<byte[], PojoValue>, Object>() {
long counter = 0;
@Override
public void flatMap(Tuple2<byte[], PojoValue> value, Collector<Object> out) throws Exception {
// ensure that deleted messages are passed as nulls
assertNull(value.f1);
counter++;
if (counter == elementCount) {
// we got the right number of elements
throw new SuccessException();
}
}
});
tryExecute(env, "Read deletes from Kafka");
deleteTestTopic(topic);
}
示例4: testTimestamps
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
/**
* Kafka 0.10 specific test, ensuring Timestamps are properly written to and read from Kafka
*/
@Test(timeout = 60000)
public void testTimestamps() throws Exception {
final String topic = "tstopic";
createTestTopic(topic, 3, 1);
// ---------- Produce an event time stream into Kafka -------------------
StreamExecutionEnvironment env = StreamExecutionEnvironment.createRemoteEnvironment("localhost", flinkPort);
env.setParallelism(1);
env.getConfig().setRestartStrategy(RestartStrategies.noRestart());
env.getConfig().disableSysoutLogging();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
DataStream<Long> streamWithTimestamps = env.addSource(new SourceFunction<Long>() {
boolean running = true;
@Override
public void run(SourceContext<Long> ctx) throws Exception {
long i = 0;
while(running) {
ctx.collectWithTimestamp(i, i*2);
if(i++ == 1000L) {
running = false;
}
}
}
@Override
public void cancel() {
running = false;
}
});
final TypeInformationSerializationSchema<Long> longSer = new TypeInformationSerializationSchema<>(TypeInfoParser.<Long>parse("Long"), env.getConfig());
FlinkKafkaProducer010.FlinkKafkaProducer010Configuration prod = FlinkKafkaProducer010.writeToKafkaWithTimestamps(streamWithTimestamps, topic, new KeyedSerializationSchemaWrapper<>(longSer), standardProps, new KafkaPartitioner<Long>() {
@Override
public int partition(Long next, byte[] serializedKey, byte[] serializedValue, int numPartitions) {
return (int)(next % 3);
}
});
prod.setParallelism(3);
prod.setWriteTimestampToKafka(true);
env.execute("Produce some");
// ---------- Consume stream from Kafka -------------------
env = StreamExecutionEnvironment.createRemoteEnvironment("localhost", flinkPort);
env.setParallelism(1);
env.getConfig().setRestartStrategy(RestartStrategies.noRestart());
env.getConfig().disableSysoutLogging();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
FlinkKafkaConsumer010<Long> kafkaSource = new FlinkKafkaConsumer010<>(topic, new LimitedLongDeserializer(), standardProps);
kafkaSource.assignTimestampsAndWatermarks(new AssignerWithPunctuatedWatermarks<Long>() {
@Nullable
@Override
public Watermark checkAndGetNextWatermark(Long lastElement, long extractedTimestamp) {
if(lastElement % 10 == 0) {
return new Watermark(lastElement);
}
return null;
}
@Override
public long extractTimestamp(Long element, long previousElementTimestamp) {
return previousElementTimestamp;
}
});
DataStream<Long> stream = env.addSource(kafkaSource);
GenericTypeInfo<Object> objectTypeInfo = new GenericTypeInfo<>(Object.class);
stream.transform("timestamp validating operator", objectTypeInfo, new TimestampValidatingOperator()).setParallelism(1);
env.execute("Consume again");
deleteTestTopic(topic);
}
示例5: runKeyValueTest
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
public void runKeyValueTest() throws Exception {
final String topic = "keyvaluetest";
createTestTopic(topic, 1, 1);
final int ELEMENT_COUNT = 5000;
// ----------- Write some data into Kafka -------------------
StreamExecutionEnvironment env = StreamExecutionEnvironment.createRemoteEnvironment("localhost", flinkPort);
env.setParallelism(1);
env.setRestartStrategy(RestartStrategies.noRestart());
env.getConfig().disableSysoutLogging();
DataStream<Tuple2<Long, PojoValue>> kvStream = env.addSource(new SourceFunction<Tuple2<Long, PojoValue>>() {
@Override
public void run(SourceContext<Tuple2<Long, PojoValue>> ctx) throws Exception {
Random rnd = new Random(1337);
for (long i = 0; i < ELEMENT_COUNT; i++) {
PojoValue pojo = new PojoValue();
pojo.when = new Date(rnd.nextLong());
pojo.lon = rnd.nextLong();
pojo.lat = i;
// make every second key null to ensure proper "null" serialization
Long key = (i % 2 == 0) ? null : i;
ctx.collect(new Tuple2<>(key, pojo));
}
}
@Override
public void cancel() {
}
});
KeyedSerializationSchema<Tuple2<Long, PojoValue>> schema = new TypeInformationKeyValueSerializationSchema<>(Long.class, PojoValue.class, env.getConfig());
Properties producerProperties = FlinkKafkaProducerBase.getPropertiesFromBrokerList(brokerConnectionStrings);
producerProperties.setProperty("retries", "3");
kafkaServer.produceIntoKafka(kvStream, topic, schema, producerProperties, null);
env.execute("Write KV to Kafka");
// ----------- Read the data again -------------------
env = StreamExecutionEnvironment.createRemoteEnvironment("localhost", flinkPort);
env.setParallelism(1);
env.setRestartStrategy(RestartStrategies.noRestart());
env.getConfig().disableSysoutLogging();
KeyedDeserializationSchema<Tuple2<Long, PojoValue>> readSchema = new TypeInformationKeyValueSerializationSchema<>(Long.class, PojoValue.class, env.getConfig());
Properties props = new Properties();
props.putAll(standardProps);
props.putAll(secureProps);
DataStream<Tuple2<Long, PojoValue>> fromKafka = env.addSource(kafkaServer.getConsumer(topic, readSchema, props));
fromKafka.flatMap(new RichFlatMapFunction<Tuple2<Long,PojoValue>, Object>() {
long counter = 0;
@Override
public void flatMap(Tuple2<Long, PojoValue> value, Collector<Object> out) throws Exception {
// the elements should be in order.
Assert.assertTrue("Wrong value " + value.f1.lat, value.f1.lat == counter );
if (value.f1.lat % 2 == 0) {
assertNull("key was not null", value.f0);
} else {
Assert.assertTrue("Wrong value " + value.f0, value.f0 == counter);
}
counter++;
if (counter == ELEMENT_COUNT) {
// we got the right number of elements
throw new SuccessException();
}
}
});
tryExecute(env, "Read KV from Kafka");
deleteTestTopic(topic);
}
示例6: runAllDeletesTest
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
/**
* Test delete behavior and metrics for producer
* @throws Exception
*/
public void runAllDeletesTest() throws Exception {
final String topic = "alldeletestest";
createTestTopic(topic, 1, 1);
final int ELEMENT_COUNT = 300;
// ----------- Write some data into Kafka -------------------
StreamExecutionEnvironment env = StreamExecutionEnvironment.createRemoteEnvironment("localhost", flinkPort);
env.setParallelism(1);
env.getConfig().setRestartStrategy(RestartStrategies.noRestart());
env.getConfig().disableSysoutLogging();
DataStream<Tuple2<byte[], PojoValue>> kvStream = env.addSource(new SourceFunction<Tuple2<byte[], PojoValue>>() {
@Override
public void run(SourceContext<Tuple2<byte[], PojoValue>> ctx) throws Exception {
Random rnd = new Random(1337);
for (long i = 0; i < ELEMENT_COUNT; i++) {
final byte[] key = new byte[200];
rnd.nextBytes(key);
ctx.collect(new Tuple2<>(key, (PojoValue) null));
}
}
@Override
public void cancel() {
}
});
TypeInformationKeyValueSerializationSchema<byte[], PojoValue> schema = new TypeInformationKeyValueSerializationSchema<>(byte[].class, PojoValue.class, env.getConfig());
Properties producerProperties = FlinkKafkaProducerBase.getPropertiesFromBrokerList(brokerConnectionStrings);
producerProperties.setProperty("retries", "3");
producerProperties.putAll(secureProps);
kafkaServer.produceIntoKafka(kvStream, topic, schema, producerProperties, null);
env.execute("Write deletes to Kafka");
// ----------- Read the data again -------------------
env = StreamExecutionEnvironment.createRemoteEnvironment("localhost", flinkPort);
env.setParallelism(1);
env.getConfig().setRestartStrategy(RestartStrategies.noRestart());
env.getConfig().disableSysoutLogging();
Properties props = new Properties();
props.putAll(standardProps);
props.putAll(secureProps);
DataStream<Tuple2<byte[], PojoValue>> fromKafka = env.addSource(kafkaServer.getConsumer(topic, schema, props));
fromKafka.flatMap(new RichFlatMapFunction<Tuple2<byte[], PojoValue>, Object>() {
long counter = 0;
@Override
public void flatMap(Tuple2<byte[], PojoValue> value, Collector<Object> out) throws Exception {
// ensure that deleted messages are passed as nulls
assertNull(value.f1);
counter++;
if (counter == ELEMENT_COUNT) {
// we got the right number of elements
throw new SuccessException();
}
}
});
tryExecute(env, "Read deletes from Kafka");
deleteTestTopic(topic);
}