本文整理汇总了Java中org.apache.flink.streaming.api.environment.StreamExecutionEnvironment.enableCheckpointing方法的典型用法代码示例。如果您正苦于以下问题:Java StreamExecutionEnvironment.enableCheckpointing方法的具体用法?Java StreamExecutionEnvironment.enableCheckpointing怎么用?Java StreamExecutionEnvironment.enableCheckpointing使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.flink.streaming.api.environment.StreamExecutionEnvironment
的用法示例。
在下文中一共展示了StreamExecutionEnvironment.enableCheckpointing方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: main
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
public static void main(String[] args) throws Exception {
// Setup the execution environment
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.enableCheckpointing(1000);
DataStream<TweetImpression> tweetStream = env.addSource(new TweetSourceFunction(true), "TweetImpression Source w/ duplicates");
tweetStream
.keyBy(TweetImpression.getKeySelector())
.filter(new DedupeFilterFunction(TweetImpression.getKeySelector(), DEDUPE_CACHE_EXPIRATION_TIME_MS))
.print();
// execute program
env.execute();
}
示例2: testFixedRestartingWhenCheckpointingAndExplicitExecutionRetriesNonZero
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
/**
* Checks that in a streaming use case where checkpointing is enabled and the number
* of execution retries is set to 42 and the delay to 1337, fixed delay restarting is used.
*/
@Test
public void testFixedRestartingWhenCheckpointingAndExplicitExecutionRetriesNonZero() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.enableCheckpointing(500);
env.setNumberOfExecutionRetries(42);
env.getConfig().setExecutionRetryDelay(1337);
env.fromElements(1).print();
StreamGraph graph = env.getStreamGraph();
JobGraph jobGraph = graph.getJobGraph();
RestartStrategies.RestartStrategyConfiguration restartStrategy =
jobGraph.getSerializedExecutionConfig().deserializeValue(getClass().getClassLoader()).getRestartStrategy();
Assert.assertNotNull(restartStrategy);
Assert.assertTrue(restartStrategy instanceof RestartStrategies.FixedDelayRestartStrategyConfiguration);
Assert.assertEquals(42, ((RestartStrategies.FixedDelayRestartStrategyConfiguration) restartStrategy).getRestartAttempts());
Assert.assertEquals(1337, ((RestartStrategies.FixedDelayRestartStrategyConfiguration) restartStrategy).getDelayBetweenAttemptsInterval().toMilliseconds());
}
示例3: main
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
env.enableCheckpointing(1000);
env.setRestartStrategy(RestartStrategies.fixedDelayRestart(1, 1000));
env.setStateBackend(new FsStateBackend("file:///" + System.getProperty("java.io.tmpdir") + "/flink/backend"));
CassandraSink<Tuple2<String, Integer>> sink = CassandraSink.addSink(env.addSource(new MySource()))
.setQuery("INSERT INTO example.values (id, counter) values (?, ?);")
.enableWriteAheadLog()
.setClusterBuilder(new ClusterBuilder() {
private static final long serialVersionUID = 2793938419775311824L;
@Override
public Cluster buildCluster(Cluster.Builder builder) {
return builder.addContactPoint("127.0.0.1").build();
}
})
.build();
sink.name("Cassandra Sink").disableChaining().setParallelism(1).uid("hello");
env.execute();
}
示例4: testProgram
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
@Override
public void testProgram(StreamExecutionEnvironment env) {
assertTrue("Broken test setup", NUM_STRINGS % 40 == 0);
int PARALLELISM = 12;
env.enableCheckpointing(20);
env.setParallelism(PARALLELISM);
env.disableOperatorChaining();
DataStream<String> stream = env.addSource(new StringGeneratingSourceFunction(NUM_STRINGS)).startNewChain();
DataStream<String> mapped = stream
.map(new OnceFailingIdentityMapper(NUM_STRINGS));
RollingSink<String> sink = new RollingSink<String>(outPath)
.setBucketer(new NonRollingBucketer())
.setBatchSize(10000)
.setValidLengthPrefix("")
.setPendingPrefix("")
.setPendingSuffix(PENDING_SUFFIX)
.setInProgressSuffix(IN_PROGRESS_SUFFIX);
mapped.addSink(sink);
}
示例5: runPartitioningProgram
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
private static void runPartitioningProgram(int jobManagerPort, int parallelism) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.createRemoteEnvironment("localhost", jobManagerPort);
env.setParallelism(parallelism);
env.getConfig().enableObjectReuse();
env.setBufferTimeout(5L);
env.enableCheckpointing(1000, CheckpointingMode.AT_LEAST_ONCE);
env
.addSource(new TimeStampingSource())
.map(new IdMapper<Tuple2<Long, Long>>())
.keyBy(0)
.addSink(new TimestampingSink());
env.execute("Partitioning Program");
}
示例6: main
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.enableCheckpointing(3000, CheckpointingMode.EXACTLY_ONCE);
final RMQConnectionConfig connectionConfig = new RMQConnectionConfig.Builder()
.setHost("localhost")
.setPort(5672)
.setVirtualHost("/")
.setUserName("guest")
.setPassword("guest")
.build();
final DataStream<String> stream = env
.addSource(new RMQSource<String>(
connectionConfig, // config for the RabbitMQ connection
"flink-test", // name of the RabbitMQ queue to consume
true, // use correlation ids; can be false if only at-least-once is required
new SimpleStringSchema())) // deserialization schema to turn messages into Java objects
.setParallelism(1); // non-parallel source is only required for exactly-once
stream.rebalance().map(new MapFunction<String, String>() {
private static final long serialVersionUID = -6867736771747690202L;
@Override
public String map(String value) throws Exception {
return "RabbitMQ and Flink says: " + value;
}
}).print();
env.execute();
}
开发者ID:PacktPublishing,项目名称:Practical-Real-time-Processing-and-Analytics,代码行数:32,代码来源:FlinkRabbitMQSourceExample.java
示例7: main
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
public static void main(String[] args) throws Exception {
final ParameterTool params = ParameterTool.fromArgs(args);
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.getConfig().setGlobalJobParameters(params);
env.setParallelism(2);
env.enableCheckpointing(5000);
env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
env.setStateBackend(new FsStateBackend("file:///Users/zhouzhou/Binary/flink-1.3.2/testcheckpoints/"));
RawLogGroupListDeserializer deserializer = new RawLogGroupListDeserializer();
Properties configProps = new Properties();
configProps.put(ConfigConstants.LOG_ENDPOINT, sEndpoint);
configProps.put(ConfigConstants.LOG_ACCESSSKEYID, sAccessKeyId);
configProps.put(ConfigConstants.LOG_ACCESSKEY, sAccessKey);
configProps.put(ConfigConstants.LOG_PROJECT, sProject);
configProps.put(ConfigConstants.LOG_LOGSTORE, sLogstore);
configProps.put(ConfigConstants.LOG_MAX_NUMBER_PER_FETCH, "10");
configProps.put(ConfigConstants.LOG_CONSUMER_BEGIN_POSITION, Consts.LOG_FROM_CHECKPOINT);
configProps.put(ConfigConstants.LOG_CONSUMERGROUP, "23_ots_sla_etl_product");
DataStream<RawLogGroupList> logTestStream = env.addSource(
new FlinkLogConsumer<RawLogGroupList>(deserializer, configProps)
);
logTestStream.writeAsText("/Users/zhouzhou/Binary/flink-1.3.2/data/newb.txt." + System.nanoTime());
env.execute("flink log connector");
}
示例8: main
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
public static void main(String[] args) throws Exception {
// Read parameters from command line
final ParameterTool params = ParameterTool.fromArgs(args);
if(params.getNumberOfParameters() < 4) {
System.out.println("\nUsage: FlinkReadKafka --read-topic <topic> --write-topic <topic> --bootstrap.servers <kafka brokers> --group.id <groupid>");
return;
}
// setup streaming environment
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.getConfig().setRestartStrategy(RestartStrategies.fixedDelayRestart(4, 10000));
env.enableCheckpointing(300000); // 300 seconds
env.getConfig().setGlobalJobParameters(params);
DataStream<String> messageStream = env
.addSource(new FlinkKafkaConsumer010<>(
params.getRequired("read-topic"),
new SimpleStringSchema(),
params.getProperties())).name("Read from Kafka");
// setup table environment
StreamTableEnvironment sTableEnv = TableEnvironment.getTableEnvironment(env);
// Write JSON payload back to Kafka topic
messageStream.addSink(new FlinkKafkaProducer010<>(
params.getRequired("write-topic"),
new SimpleStringSchema(),
params.getProperties())).name("Write To Kafka");
env.execute("FlinkReadWriteKafka");
}
示例9: exactlyOnceWriteSimulator
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
public void exactlyOnceWriteSimulator(final StreamId outStreamId, final StreamUtils streamUtils, int numElements) throws Exception {
final int checkpointInterval = 100;
final int restartAttempts = 1;
final long delayBetweenAttempts = 0L;
//30 sec timeout for all
final long txTimeout = 30 * 1000;
final long txTimeoutMax = 30 * 1000;
final long txTimeoutGracePeriod = 30 * 1000;
final String jobName = "ExactlyOnceSimulator";
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(parallelism);
env.enableCheckpointing(checkpointInterval);
env.setRestartStrategy(RestartStrategies.fixedDelayRestart(restartAttempts, delayBetweenAttempts));
// Pravega Writer
FlinkPravegaWriter<Integer> pravegaExactlyOnceWriter = streamUtils.newExactlyOnceWriter(outStreamId,
Integer.class, new IdentityRouter<>());
env
.addSource(new IntegerCounterSourceGenerator(numElements))
.map(new FailingIdentityMapper<>(numElements / parallelism / 2))
.rebalance()
.addSink(pravegaExactlyOnceWriter);
env.execute(jobName);
}
示例10: standardReadWriteSimulator
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
public void standardReadWriteSimulator(final StreamId inStreamId, final StreamId outStreamId, final StreamUtils streamUtils, int numElements) throws Exception {
final int checkpointInterval = 100;
final int taskFailureRestartAttempts = 1;
final long delayBetweenRestartAttempts = 0L;
final long startTime = 0L;
final String jobName = "standardReadWriteSimulator";
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(parallelism);
env.enableCheckpointing(checkpointInterval);
env.setRestartStrategy(RestartStrategies.fixedDelayRestart(taskFailureRestartAttempts, delayBetweenRestartAttempts));
// the Pravega reader
final FlinkPravegaReader<Integer> pravegaSource = streamUtils.getFlinkPravegaParams().newReader(inStreamId, startTime, Integer.class);
// Pravega Writer
FlinkPravegaWriter<Integer> pravegaWriter = streamUtils.getFlinkPravegaParams().newWriter(outStreamId, Integer.class, new IdentityRouter<>());
pravegaWriter.setPravegaWriterMode(PravegaWriterMode.ATLEAST_ONCE);
DataStream<Integer> stream = env.addSource(pravegaSource).map(new IdentityMapper<>());
stream.addSink(pravegaWriter);
stream.addSink(new IntSequenceExactlyOnceValidator(numElements));
env.execute(jobName);
}
示例11: createJobGraphWithOperatorState
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
private static JobGraph createJobGraphWithOperatorState(
int parallelism, int maxParallelism, OperatorCheckpointMethod checkpointMethod) {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(parallelism);
env.getConfig().setMaxParallelism(maxParallelism);
env.enableCheckpointing(Long.MAX_VALUE);
env.setRestartStrategy(RestartStrategies.noRestart());
StateSourceBase.workStartedLatch = new CountDownLatch(parallelism);
SourceFunction<Integer> src;
switch (checkpointMethod) {
case CHECKPOINTED_FUNCTION:
src = new PartitionedStateSource(false);
break;
case CHECKPOINTED_FUNCTION_BROADCAST:
src = new PartitionedStateSource(true);
break;
case LIST_CHECKPOINTED:
src = new PartitionedStateSourceListCheckpointed();
break;
case NON_PARTITIONED:
src = new NonPartitionedStateSource();
break;
default:
throw new IllegalArgumentException();
}
DataStream<Integer> input = env.addSource(src);
input.addSink(new DiscardingSink<Integer>());
return env.getStreamGraph().getJobGraph();
}
示例12: testCreateSavepointOnFlink11WithRocksDB
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
/**
* This has to be manually executed to create the savepoint on Flink 1.1.
*/
@Test
@Ignore
public void testCreateSavepointOnFlink11WithRocksDB() throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
RocksDBStateBackend rocksBackend =
new RocksDBStateBackend(new MemoryStateBackend());
// rocksBackend.enableFullyAsyncSnapshots();
env.setStateBackend(rocksBackend);
env.enableCheckpointing(500);
env.setParallelism(4);
env.setMaxParallelism(4);
// create source
env
.addSource(new LegacyCheckpointedSource(NUM_SOURCE_ELEMENTS)).setMaxParallelism(1).uid("LegacyCheckpointedSource")
.flatMap(new LegacyCheckpointedFlatMap()).startNewChain().uid("LegacyCheckpointedFlatMap")
.keyBy(0)
.flatMap(new LegacyCheckpointedFlatMapWithKeyedState()).startNewChain().uid("LegacyCheckpointedFlatMapWithKeyedState")
.keyBy(0)
.flatMap(new KeyedStateSettingFlatMap()).startNewChain().uid("KeyedStateSettingFlatMap")
.keyBy(0)
.transform(
"custom_operator",
new TypeHint<Tuple2<Long, Long>>() {}.getTypeInfo(),
new CheckpointedUdfOperator(new LegacyCheckpointedFlatMapWithKeyedState())).uid("LegacyCheckpointedOperator")
.addSink(new AccumulatorCountingSink<Tuple2<Long, Long>>(EXPECTED_ELEMENTS_ACCUMULATOR));
executeAndSavepoint(
env,
"src/test/resources/stateful-udf-migration-itcase-flink1.1-rocksdb-savepoint",
new Tuple2<>(EXPECTED_ELEMENTS_ACCUMULATOR, NUM_SOURCE_ELEMENTS));
}
示例13: createJobGraphWithKeyedAndNonPartitionedOperatorState
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
private static JobGraph createJobGraphWithKeyedAndNonPartitionedOperatorState(
int parallelism,
int maxParallelism,
int fixedParallelism,
int numberKeys,
int numberElements,
boolean terminateAfterEmission,
int checkpointingInterval) {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(parallelism);
env.getConfig().setMaxParallelism(maxParallelism);
env.enableCheckpointing(checkpointingInterval);
env.setRestartStrategy(RestartStrategies.noRestart());
DataStream<Integer> input = env.addSource(new SubtaskIndexNonPartitionedStateSource(
numberKeys,
numberElements,
terminateAfterEmission))
.setParallelism(fixedParallelism)
.keyBy(new KeySelector<Integer, Integer>() {
private static final long serialVersionUID = -7952298871120320940L;
@Override
public Integer getKey(Integer value) throws Exception {
return value;
}
});
SubtaskIndexFlatMapper.workCompletedLatch = new CountDownLatch(numberKeys);
DataStream<Tuple2<Integer, Integer>> result = input.flatMap(new SubtaskIndexFlatMapper(numberElements));
result.addSink(new CollectionSink<Tuple2<Integer, Integer>>());
return env.getStreamGraph().getJobGraph();
}
示例14: testSavepointRestoreFromFlink11FromRocksDB
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
@Test
public void testSavepointRestoreFromFlink11FromRocksDB() throws Exception {
final int EXPECTED_SUCCESSFUL_CHECKS = 21;
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
// we only test memory state backend yet
env.setStateBackend(new RocksDBStateBackend(new MemoryStateBackend()));
env.enableCheckpointing(500);
env.setParallelism(4);
env.setMaxParallelism(4);
// create source
env
.addSource(new RestoringCheckingSource(NUM_SOURCE_ELEMENTS)).setMaxParallelism(1).uid("LegacyCheckpointedSource")
.flatMap(new RestoringCheckingFlatMap()).startNewChain().uid("LegacyCheckpointedFlatMap")
.keyBy(0)
.flatMap(new RestoringCheckingFlatMapWithKeyedState()).startNewChain().uid("LegacyCheckpointedFlatMapWithKeyedState")
.keyBy(0)
.flatMap(new KeyedStateCheckingFlatMap()).startNewChain().uid("KeyedStateSettingFlatMap")
.keyBy(0)
.transform(
"custom_operator",
new TypeHint<Tuple2<Long, Long>>() {}.getTypeInfo(),
new RestoringCheckingUdfOperator(new RestoringCheckingFlatMapWithKeyedState())).uid("LegacyCheckpointedOperator")
.addSink(new AccumulatorCountingSink<Tuple2<Long, Long>>(EXPECTED_ELEMENTS_ACCUMULATOR));
restoreAndExecute(
env,
getResourceFilename("stateful-udf-migration-itcase-flink1.1-savepoint-rocksdb"),
new Tuple2<>(SUCCESSFUL_CHECK_ACCUMULATOR, EXPECTED_SUCCESSFUL_CHECKS));
}
示例15: testSavepointRestoreFromFlink11FromRocksDB
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
@Test
public void testSavepointRestoreFromFlink11FromRocksDB() throws Exception {
final int expectedSuccessfulChecks = 21;
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
// we only test memory state backend yet
env.setStateBackend(new RocksDBStateBackend(new MemoryStateBackend()));
env.enableCheckpointing(500);
env.setParallelism(4);
env.setMaxParallelism(4);
// create source
env
.addSource(new RestoringCheckingSource(NUM_SOURCE_ELEMENTS)).setMaxParallelism(1).uid("LegacyCheckpointedSource")
.flatMap(new RestoringCheckingFlatMap()).startNewChain().uid("LegacyCheckpointedFlatMap")
.keyBy(0)
.flatMap(new RestoringCheckingFlatMapWithKeyedState()).startNewChain().uid("LegacyCheckpointedFlatMapWithKeyedState")
.keyBy(0)
.flatMap(new KeyedStateCheckingFlatMap()).startNewChain().uid("KeyedStateSettingFlatMap")
.keyBy(0)
.transform(
"custom_operator",
new TypeHint<Tuple2<Long, Long>>() {}.getTypeInfo(),
new RestoringCheckingUdfOperator(new RestoringCheckingFlatMapWithKeyedState())).uid("LegacyCheckpointedOperator")
.addSink(new AccumulatorCountingSink<Tuple2<Long, Long>>(EXPECTED_ELEMENTS_ACCUMULATOR));
restoreAndExecute(
env,
getResourceFilename("stateful-udf-migration-itcase-flink1.1-rocksdb-savepoint"),
new Tuple2<>(SUCCESSFUL_CHECK_ACCUMULATOR, expectedSuccessfulChecks));
}