本文整理汇总了Java中org.apache.flink.streaming.api.environment.StreamExecutionEnvironment.addSource方法的典型用法代码示例。如果您正苦于以下问题:Java StreamExecutionEnvironment.addSource方法的具体用法?Java StreamExecutionEnvironment.addSource怎么用?Java StreamExecutionEnvironment.addSource使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.flink.streaming.api.environment.StreamExecutionEnvironment
的用法示例。
在下文中一共展示了StreamExecutionEnvironment.addSource方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: main
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironment();
Properties properties = new Properties();
properties.load(new FileInputStream("src/main/resources/application.properties"));
Properties mqttProperties = new Properties();
// client id = a:<Organization_ID>:<App_Id>
mqttProperties.setProperty(MQTTSource.CLIENT_ID,
String.format("a:%s:%s",
properties.getProperty("Org_ID"),
properties.getProperty("App_Id")));
// mqtt server url = tcp://<Org_ID>.messaging.internetofthings.ibmcloud.com:1883
mqttProperties.setProperty(MQTTSource.URL,
String.format("tcp://%s.messaging.internetofthings.ibmcloud.com:1883",
properties.getProperty("Org_ID")));
// topic = iot-2/type/<Device_Type>/id/<Device_ID>/evt/<Event_Id>/fmt/json
mqttProperties.setProperty(MQTTSource.TOPIC,
String.format("iot-2/type/%s/id/%s/evt/%s/fmt/json",
properties.getProperty("Device_Type"),
properties.getProperty("Device_ID"),
properties.getProperty("EVENT_ID")));
mqttProperties.setProperty(MQTTSource.USERNAME, properties.getProperty("API_Key"));
mqttProperties.setProperty(MQTTSource.PASSWORD, properties.getProperty("APP_Authentication_Token"));
MQTTSource mqttSource = new MQTTSource(mqttProperties);
DataStreamSource<String> tempratureDataSource = env.addSource(mqttSource);
DataStream<String> stream = tempratureDataSource.map((MapFunction<String, String>) s -> s);
stream.print();
env.execute("Temperature Analysis");
}
示例2: main
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("group.id", "test");
DataStream<TemperatureEvent> inputEventStream = env.addSource(
new FlinkKafkaConsumer09<TemperatureEvent>("test", new EventDeserializationSchema(), properties));
Pattern<TemperatureEvent, ?> warningPattern = Pattern.<TemperatureEvent> begin("first")
.subtype(TemperatureEvent.class).where(new FilterFunction<TemperatureEvent>() {
private static final long serialVersionUID = 1L;
public boolean filter(TemperatureEvent value) {
if (value.getTemperature() >= 26.0) {
return true;
}
return false;
}
}).within(Time.seconds(10));
DataStream<Alert> patternStream = CEP.pattern(inputEventStream, warningPattern)
.select(new PatternSelectFunction<TemperatureEvent, Alert>() {
private static final long serialVersionUID = 1L;
public Alert select(Map<String, TemperatureEvent> event) throws Exception {
return new Alert("Temperature Rise Detected:" + event.get("first").getTemperature()
+ " on machine name:" + event.get("first").getMachineName());
}
});
patternStream.print();
env.execute("CEP on Temperature Sensor");
}
示例3: main
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
public static void main(String[] args) throws Exception {
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("zookeeper.connect", "localhost:2181");
properties.setProperty("group.id", "test");
properties.setProperty("auto.offset.reset", "latest");
FlinkKafkaConsumer08<DeviceEvent> flinkKafkaConsumer08 = new FlinkKafkaConsumer08<>("device-data",
new DeviceSchema(), properties);
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<DeviceEvent> messageStream = env.addSource(flinkKafkaConsumer08);
Map<String, String> config = new HashMap<>();
config.put("cluster.name", "my-application");
// This instructs the sink to emit after every element, otherwise they would be buffered
config.put("bulk.flush.max.actions", "1");
List<InetSocketAddress> transportAddresses = new ArrayList<>();
transportAddresses.add(new InetSocketAddress(InetAddress.getByName("127.0.0.1"), 9300));
messageStream.addSink(new ElasticsearchSink<DeviceEvent>(config, transportAddresses, new ESSink()));
env.execute();
}
开发者ID:PacktPublishing,项目名称:Practical-Real-time-Processing-and-Analytics,代码行数:24,代码来源:FlinkESConnector.java
示例4: main
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
public static void main(String... args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<WikipediaEditEvent> edits = env.addSource(new WikipediaEditsSource());
edits
.timeWindowAll(Time.minutes(1))
.apply(new AllWindowFunction<WikipediaEditEvent, Tuple3<Date, Long, Long>, TimeWindow>() {
@Override
public void apply(TimeWindow timeWindow, Iterable<WikipediaEditEvent> iterable, Collector<Tuple3<Date, Long, Long>> collector) throws Exception {
long count = 0;
long bytesChanged = 0;
for (WikipediaEditEvent event : iterable) {
count++;
bytesChanged += event.getByteDiff();
}
collector.collect(new Tuple3<>(new Date(timeWindow.getEnd()), count, bytesChanged));
}
})
.print();
env.execute();
}
示例5: testEventTimeOrderedWriter
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
@Test
public void testEventTimeOrderedWriter() throws Exception {
StreamExecutionEnvironment execEnv = StreamExecutionEnvironment.createLocalEnvironment();
String streamName = "testEventTimeOrderedWriter";
SETUP_UTILS.createTestStream(streamName, 1);
DataStreamSource<Integer> dataStream = execEnv
.addSource(new IntegerGeneratingSource(false, EVENT_COUNT_PER_SOURCE));
FlinkPravegaWriter<Integer> pravegaSink = new FlinkPravegaWriter<>(
SETUP_UTILS.getControllerUri(),
SETUP_UTILS.getScope(),
streamName,
new IntSerializer(),
event -> "fixedkey");
FlinkPravegaUtils.writeToPravegaInEventTimeOrder(dataStream, pravegaSink, 1);
Assert.assertNotNull(execEnv.getExecutionPlan());
}
示例6: testMultipleUnboundedPojoStreamSimpleUnion
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
@Test
public void testMultipleUnboundedPojoStreamSimpleUnion() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<Event> input1 = env.addSource(new RandomEventSource(2), "input1");
DataStream<Event> input2 = env.addSource(new RandomEventSource(2), "input2");
DataStream<Event> input3 = env.addSource(new RandomEventSource(2), "input2");
DataStream<Event> output = SiddhiCEP
.define("inputStream1", input1, "id", "name", "price", "timestamp")
.union("inputStream2", input2, "id", "name", "price", "timestamp")
.union("inputStream3", input3, "id", "name", "price", "timestamp")
.cql(
"from inputStream1 select timestamp, id, name, price insert into outputStream;"
+ "from inputStream2 select timestamp, id, name, price insert into outputStream;"
+ "from inputStream3 select timestamp, id, name, price insert into outputStream;"
)
.returns("outputStream", Event.class);
String resultPath = tempFolder.newFile().toURI().toString();
output.writeAsText(resultPath, FileSystem.WriteMode.OVERWRITE);
env.execute();
assertEquals(6, getLineCount(resultPath));
}
示例7: createProducerTopology
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
private void createProducerTopology(StreamExecutionEnvironment env, AMQSinkConfig<String> config) {
DataStreamSource<String> stream = env.addSource(new SourceFunction<String>() {
@Override
public void run(SourceContext<String> ctx) throws Exception {
for (int i = 0; i < MESSAGES_NUM; i++) {
ctx.collect("amq-" + i);
}
}
@Override
public void cancel() {}
});
AMQSink<String> sink = new AMQSink<>(config);
stream.addSink(sink);
}
示例8: main
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
public static void main(String[] args) throws Exception {
ParameterTool tool = ParameterTool.fromArgs(args);
String topic = tool.getRequired("kafka.topic");
Properties kafkaConsumerProps = new Properties();
kafkaConsumerProps.setProperty("bootstrap.servers", tool.getRequired("kafkabroker"));
kafkaConsumerProps.setProperty("group.id", tool.getRequired("kafka.groupId"));
kafkaConsumerProps.setProperty("zookeeper.connect", tool.get("zookeeper.host", "localhost:2181"));
kafkaConsumerProps.setProperty("auto.offset.reset", tool.getBoolean("from-beginning", false) ? "smallest" : "largest");
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<String> textStream = env
.addSource(new FlinkKafkaConsumer08<>(topic, new SimpleStringSchema(), kafkaConsumerProps));
textStream.flatMap(new LineSplitter())
.keyBy(0)
.sum(1)
.print();
env.execute("WordCount from Kafka Example");
}
示例9: testDisabledTimestamps
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
/**
* These check whether timestamps are properly ignored when they are disabled.
*/
@Test
public void testDisabledTimestamps() throws Exception {
final int numElements = 10;
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);
env.setParallelism(PARALLELISM);
env.getConfig().disableSysoutLogging();
DataStream<Integer> source1 = env.addSource(new MyNonWatermarkingSource(numElements));
DataStream<Integer> source2 = env.addSource(new MyNonWatermarkingSource(numElements));
source1
.map(new IdentityMap())
.connect(source2).map(new IdentityCoMap())
.transform("Custom Operator", BasicTypeInfo.INT_TYPE_INFO, new DisabledTimestampCheckingOperator())
.addSink(new DiscardingSink<Integer>());
env.execute();
}
示例10: testTransportClientFails
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
@Test(expected = JobExecutionException.class)
public void testTransportClientFails() throws Exception{
// this checks whether the TransportClient fails early when there is no cluster to
// connect to. We don't hava such as test for the Node Client version since that
// one will block and wait for a cluster to come online
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStreamSource<Tuple2<Integer, String>> source = env.addSource(new TestSourceFunction());
Map<String, String> config = Maps.newHashMap();
// This instructs the sink to emit after every element, otherwise they would be buffered
config.put(ElasticsearchSink.CONFIG_KEY_BULK_FLUSH_MAX_ACTIONS, "1");
config.put("cluster.name", "my-node-client-cluster");
// connect to our local node
config.put("node.local", "true");
List<TransportAddress> transports = Lists.newArrayList();
transports.add(new LocalTransportAddress("1"));
source.addSink(new ElasticsearchSink<>(config, transports, new TestIndexRequestBuilder()));
env.execute("Elasticsearch Node Client Test");
}
示例11: testUnboundedPojoSourceAndReturnTuple
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
@Test
public void testUnboundedPojoSourceAndReturnTuple() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<Event> input = env.addSource(new RandomEventSource(5));
DataStream<Tuple4<Long, Integer, String, Double>> output = SiddhiCEP
.define("inputStream", input, "id", "name", "price", "timestamp")
.cql("from inputStream select timestamp, id, name, price insert into outputStream")
.returns("outputStream");
DataStream<Integer> following = output.map(new MapFunction<Tuple4<Long, Integer, String, Double>, Integer>() {
@Override
public Integer map(Tuple4<Long, Integer, String, Double> value) throws Exception {
return value.f1;
}
});
String resultPath = tempFolder.newFile().toURI().toString();
following.writeAsText(resultPath, FileSystem.WriteMode.OVERWRITE);
env.execute();
assertEquals(5, getLineCount(resultPath));
}
示例12: main
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
public static void main(String[] args) throws Exception {
ParameterTool parameterTool = ParameterTool.fromArgs(args);
if (parameterTool.getNumberOfParameters() < 2) {
System.out.println("Missing parameters!");
System.out.println("Usage: Kafka --topic <topic> --bootstrap.servers <kafka brokers>");
return;
}
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.getConfig().disableSysoutLogging();
env.getConfig().setRestartStrategy(RestartStrategies.fixedDelayRestart(4, 10000));
// very simple data generator
DataStream<String> messageStream = env.addSource(new SourceFunction<String>() {
private static final long serialVersionUID = 6369260445318862378L;
public boolean running = true;
@Override
public void run(SourceContext<String> ctx) throws Exception {
long i = 0;
while (this.running) {
ctx.collect("Element - " + i++);
Thread.sleep(500);
}
}
@Override
public void cancel() {
running = false;
}
});
// write data into Kafka
messageStream.addSink(new FlinkKafkaProducer08<>(parameterTool.getRequired("topic"), new SimpleStringSchema(), parameterTool.getProperties()));
env.execute("Write into Kafka example");
}
示例13: main
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
public static void main(String args[]) throws Exception {
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("zookeeper.connect", "localhost:2181");
properties.setProperty("group.id", "test");
properties.setProperty("auto.offset.reset", "latest");
FlinkKafkaConsumer08<String> flinkKafkaConsumer08 = new FlinkKafkaConsumer08<>("flink-test",
new SimpleStringSchema(), properties);
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<String> messageStream = env.addSource(flinkKafkaConsumer08);
// print() will write the contents of the stream to the TaskManager's
// standard out stream
// the rebelance call is causing a repartitioning of the data so that
// all machines
// see the messages (for example in cases when "num kafka partitions" <
// "num flink operators"
messageStream.rebalance().map(new MapFunction<String, String>() {
private static final long serialVersionUID = -6867736771747690202L;
@Override
public String map(String value) throws Exception {
return "Kafka and Flink says: " + value;
}
}).print();
env.execute();
}
开发者ID:PacktPublishing,项目名称:Practical-Real-time-Processing-and-Analytics,代码行数:30,代码来源:FlinkKafkaSourceExample.java
示例14: main
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
public static void main(String... args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<WikipediaEditEvent> edits = env.addSource(new WikipediaEditsSource());
edits.filter((FilterFunction<WikipediaEditEvent>) edit -> {
return !edit.isBotEdit() && edit.getByteDiff() > 1000;
})
.print();
env.execute();
}
示例15: main
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
public static void main(String[] args) throws Exception {
final ParameterTool params = ParameterTool.fromArgs(args);
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.getConfig().setGlobalJobParameters(params);
env.setParallelism(3);
DataStream<String> simpleStringStream = env.addSource(new EventsGenerator());
Properties configProps = new Properties();
configProps.put(ConfigConstants.LOG_ENDPOINT, sEndpoint);
configProps.put(ConfigConstants.LOG_ACCESSSKEYID, sAccessKeyId);
configProps.put(ConfigConstants.LOG_ACCESSKEY, sAccessKey);
configProps.put(ConfigConstants.LOG_PROJECT, sProject);
configProps.put(ConfigConstants.LOG_LOGSTORE, sLogstore);
FlinkLogProducer<String> logProducer = new FlinkLogProducer<String>(new SimpleLogSerializer(), configProps);
logProducer.setCustomPartitioner(new LogPartitioner<String>() {
@Override
public String getHashKey(String element) {
try {
MessageDigest md = MessageDigest.getInstance("MD5");
md.update(element.getBytes());
String hash = new BigInteger(1, md.digest()).toString(16);
while(hash.length() < 32) hash = "0" + hash;
return hash;
} catch (NoSuchAlgorithmException e) {
}
return "0000000000000000000000000000000000000000000000000000000000000000";
}
});
simpleStringStream.addSink(logProducer);
env.execute("flink log producer");
}