本文整理汇总了Java中org.apache.flink.streaming.api.environment.StreamExecutionEnvironment.createRemoteEnvironment方法的典型用法代码示例。如果您正苦于以下问题:Java StreamExecutionEnvironment.createRemoteEnvironment方法的具体用法?Java StreamExecutionEnvironment.createRemoteEnvironment怎么用?Java StreamExecutionEnvironment.createRemoteEnvironment使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类org.apache.flink.streaming.api.environment.StreamExecutionEnvironment
的用法示例。
在下文中一共展示了StreamExecutionEnvironment.createRemoteEnvironment方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: runPartitioningProgram
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
private static void runPartitioningProgram(int jobManagerPort, int parallelism) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.createRemoteEnvironment("localhost", jobManagerPort);
env.setParallelism(parallelism);
env.getConfig().enableObjectReuse();
env.setBufferTimeout(5L);
env.enableCheckpointing(1000, CheckpointingMode.AT_LEAST_ONCE);
env
.addSource(new TimeStampingSource())
.map(new IdMapper<Tuple2<Long, Long>>())
.keyBy(0)
.addSink(new TimestampingSink());
env.execute("Partitioning Program");
}
示例2: testInvalidOffset
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
@Test(timeout = 60000)
public void testInvalidOffset() throws Exception {
final int parallelism = 1;
// write 20 messages into topic:
final String topic = writeSequence("invalidOffsetTopic", 20, parallelism, 1);
// set invalid offset:
CuratorFramework curatorClient = ((KafkaTestEnvironmentImpl)kafkaServer).createCuratorClient();
ZookeeperOffsetHandler.setOffsetInZooKeeper(curatorClient, standardProps.getProperty("group.id"), topic, 0, 1234);
curatorClient.close();
// read from topic
final int valuesCount = 20;
final int startFrom = 0;
final StreamExecutionEnvironment env = StreamExecutionEnvironment.createRemoteEnvironment("localhost", flinkPort);
env.getConfig().disableSysoutLogging();
readSequence(env, standardProps, parallelism, topic, valuesCount, startFrom);
deleteTestTopic(topic);
}
示例3: runFailOnAutoOffsetResetNone
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
/**
* Ensure that the consumer is properly failing if "auto.offset.reset" is set to "none".
* @throws Exception
*/
public void runFailOnAutoOffsetResetNone() throws Exception {
final String topic = "auto-offset-reset-none-test";
final int parallelism = 1;
kafkaServer.createTestTopic(topic, parallelism, 1);
final StreamExecutionEnvironment env =
StreamExecutionEnvironment.createRemoteEnvironment("localhost", flink.getLeaderRPCPort());
env.setParallelism(parallelism);
env.setRestartStrategy(RestartStrategies.noRestart()); // fail immediately
env.getConfig().disableSysoutLogging();
// ----------- add consumer ----------
Properties customProps = new Properties();
customProps.putAll(standardProps);
customProps.putAll(secureProps);
customProps.setProperty("auto.offset.reset", "none"); // test that "none" leads to an exception
FlinkKafkaConsumerBase<String> source = kafkaServer.getConsumer(topic, new SimpleStringSchema(), customProps);
DataStreamSource<String> consuming = env.addSource(source);
consuming.addSink(new DiscardingSink<String>());
try {
env.execute("Test auto offset reset none");
} catch (Throwable e) {
// check if correct exception has been thrown
if (!e.getCause().getCause().getMessage().contains("Unable to find previous offset") // kafka 0.8
&& !e.getCause().getCause().getMessage().contains("Undefined offset with no reset policy for partition") // kafka 0.9
) {
throw e;
}
}
kafkaServer.deleteTestTopic(topic);
}
示例4: runFailOnAutoOffsetResetNone
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
/**
* Ensure that the consumer is properly failing if "auto.offset.reset" is set to "none"
* @throws Exception
*/
public void runFailOnAutoOffsetResetNone() throws Exception {
final String topic = "auto-offset-reset-none-test";
final int parallelism = 1;
kafkaServer.createTestTopic(topic, parallelism, 1);
final StreamExecutionEnvironment env =
StreamExecutionEnvironment.createRemoteEnvironment("localhost", flink.getLeaderRPCPort());
env.setParallelism(parallelism);
env.setRestartStrategy(RestartStrategies.noRestart()); // fail immediately
env.getConfig().disableSysoutLogging();
// ----------- add consumer ----------
Properties customProps = new Properties();
customProps.putAll(standardProps);
customProps.putAll(secureProps);
customProps.setProperty("auto.offset.reset", "none"); // test that "none" leads to an exception
FlinkKafkaConsumerBase<String> source = kafkaServer.getConsumer(topic, new SimpleStringSchema(), customProps);
DataStreamSource<String> consuming = env.addSource(source);
consuming.addSink(new DiscardingSink<String>());
try {
env.execute("Test auto offset reset none");
} catch(Throwable e) {
System.out.println("MESSAGE: " + e.getCause().getCause().getMessage());
// check if correct exception has been thrown
if(!e.getCause().getCause().getMessage().contains("Unable to find previous offset") // kafka 0.8
&& !e.getCause().getCause().getMessage().contains("Undefined offset with no reset policy for partition") // kafka 0.9
) {
throw e;
}
}
kafkaServer.deleteTestTopic(topic);
}
示例5: runAllDeletesTest
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
/**
* Test delete behavior and metrics for producer
* @throws Exception
*/
public void runAllDeletesTest() throws Exception {
final String topic = "alldeletestest";
createTestTopic(topic, 1, 1);
final int ELEMENT_COUNT = 300;
// ----------- Write some data into Kafka -------------------
StreamExecutionEnvironment env = StreamExecutionEnvironment.createRemoteEnvironment("localhost", flinkPort);
env.setParallelism(1);
env.getConfig().setRestartStrategy(RestartStrategies.noRestart());
env.getConfig().disableSysoutLogging();
DataStream<Tuple2<byte[], PojoValue>> kvStream = env.addSource(new SourceFunction<Tuple2<byte[], PojoValue>>() {
@Override
public void run(SourceContext<Tuple2<byte[], PojoValue>> ctx) throws Exception {
Random rnd = new Random(1337);
for (long i = 0; i < ELEMENT_COUNT; i++) {
final byte[] key = new byte[200];
rnd.nextBytes(key);
ctx.collect(new Tuple2<>(key, (PojoValue) null));
}
}
@Override
public void cancel() {
}
});
TypeInformationKeyValueSerializationSchema<byte[], PojoValue> schema = new TypeInformationKeyValueSerializationSchema<>(byte[].class, PojoValue.class, env.getConfig());
Properties producerProperties = FlinkKafkaProducerBase.getPropertiesFromBrokerList(brokerConnectionStrings);
producerProperties.setProperty("retries", "3");
producerProperties.putAll(secureProps);
kafkaServer.produceIntoKafka(kvStream, topic, schema, producerProperties, null);
env.execute("Write deletes to Kafka");
// ----------- Read the data again -------------------
env = StreamExecutionEnvironment.createRemoteEnvironment("localhost", flinkPort);
env.setParallelism(1);
env.getConfig().setRestartStrategy(RestartStrategies.noRestart());
env.getConfig().disableSysoutLogging();
Properties props = new Properties();
props.putAll(standardProps);
props.putAll(secureProps);
DataStream<Tuple2<byte[], PojoValue>> fromKafka = env.addSource(kafkaServer.getConsumer(topic, schema, props));
fromKafka.flatMap(new RichFlatMapFunction<Tuple2<byte[], PojoValue>, Object>() {
long counter = 0;
@Override
public void flatMap(Tuple2<byte[], PojoValue> value, Collector<Object> out) throws Exception {
// ensure that deleted messages are passed as nulls
assertNull(value.f1);
counter++;
if (counter == ELEMENT_COUNT) {
// we got the right number of elements
throw new SuccessException();
}
}
});
tryExecute(env, "Read deletes from Kafka");
deleteTestTopic(topic);
}
示例6: runKeyValueTest
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
public void runKeyValueTest() throws Exception {
final String topic = "keyvaluetest";
createTestTopic(topic, 1, 1);
final int ELEMENT_COUNT = 5000;
// ----------- Write some data into Kafka -------------------
StreamExecutionEnvironment env = StreamExecutionEnvironment.createRemoteEnvironment("localhost", flinkPort);
env.setParallelism(1);
env.setRestartStrategy(RestartStrategies.noRestart());
env.getConfig().disableSysoutLogging();
DataStream<Tuple2<Long, PojoValue>> kvStream = env.addSource(new SourceFunction<Tuple2<Long, PojoValue>>() {
@Override
public void run(SourceContext<Tuple2<Long, PojoValue>> ctx) throws Exception {
Random rnd = new Random(1337);
for (long i = 0; i < ELEMENT_COUNT; i++) {
PojoValue pojo = new PojoValue();
pojo.when = new Date(rnd.nextLong());
pojo.lon = rnd.nextLong();
pojo.lat = i;
// make every second key null to ensure proper "null" serialization
Long key = (i % 2 == 0) ? null : i;
ctx.collect(new Tuple2<>(key, pojo));
}
}
@Override
public void cancel() {
}
});
KeyedSerializationSchema<Tuple2<Long, PojoValue>> schema = new TypeInformationKeyValueSerializationSchema<>(Long.class, PojoValue.class, env.getConfig());
Properties producerProperties = FlinkKafkaProducerBase.getPropertiesFromBrokerList(brokerConnectionStrings);
producerProperties.setProperty("retries", "3");
kafkaServer.produceIntoKafka(kvStream, topic, schema, producerProperties, null);
env.execute("Write KV to Kafka");
// ----------- Read the data again -------------------
env = StreamExecutionEnvironment.createRemoteEnvironment("localhost", flinkPort);
env.setParallelism(1);
env.setRestartStrategy(RestartStrategies.noRestart());
env.getConfig().disableSysoutLogging();
KeyedDeserializationSchema<Tuple2<Long, PojoValue>> readSchema = new TypeInformationKeyValueSerializationSchema<>(Long.class, PojoValue.class, env.getConfig());
Properties props = new Properties();
props.putAll(standardProps);
props.putAll(secureProps);
DataStream<Tuple2<Long, PojoValue>> fromKafka = env.addSource(kafkaServer.getConsumer(topic, readSchema, props));
fromKafka.flatMap(new RichFlatMapFunction<Tuple2<Long,PojoValue>, Object>() {
long counter = 0;
@Override
public void flatMap(Tuple2<Long, PojoValue> value, Collector<Object> out) throws Exception {
// the elements should be in order.
Assert.assertTrue("Wrong value " + value.f1.lat, value.f1.lat == counter );
if (value.f1.lat % 2 == 0) {
assertNull("key was not null", value.f0);
} else {
Assert.assertTrue("Wrong value " + value.f0, value.f0 == counter);
}
counter++;
if (counter == ELEMENT_COUNT) {
// we got the right number of elements
throw new SuccessException();
}
}
});
tryExecute(env, "Read KV from Kafka");
deleteTestTopic(topic);
}
示例7: create
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
public static Thread create(final int totalEventCount,
final int failAtRecordCount,
final int parallelism,
final int checkpointInterval,
final long restartDelay,
final String awsAccessKey,
final String awsSecretKey,
final String awsRegion,
final String kinesisStreamName,
final AtomicReference<Throwable> errorHandler,
final int flinkPort,
final Configuration flinkConfig) {
Runnable exactlyOnceValidationConsumer = new Runnable() {
@Override
public void run() {
try {
StreamExecutionEnvironment see = StreamExecutionEnvironment.createRemoteEnvironment("localhost", flinkPort, flinkConfig);
see.setParallelism(parallelism);
see.enableCheckpointing(checkpointInterval);
// we restart two times
see.setRestartStrategy(RestartStrategies.fixedDelayRestart(2, restartDelay));
// consuming topology
Properties consumerProps = new Properties();
consumerProps.setProperty(ConsumerConfigConstants.AWS_ACCESS_KEY_ID, awsAccessKey);
consumerProps.setProperty(ConsumerConfigConstants.AWS_SECRET_ACCESS_KEY, awsSecretKey);
consumerProps.setProperty(ConsumerConfigConstants.AWS_REGION, awsRegion);
// start reading from beginning
consumerProps.setProperty(ConsumerConfigConstants.STREAM_INITIAL_POSITION, ConsumerConfigConstants.InitialPosition.TRIM_HORIZON.name());
DataStream<String> consuming = see.addSource(new FlinkKinesisConsumer<>(kinesisStreamName, new SimpleStringSchema(), consumerProps));
consuming
.flatMap(new ArtificialFailOnceFlatMapper(failAtRecordCount))
// validate consumed records for correctness (use only 1 instance to validate all consumed records)
.flatMap(new ExactlyOnceValidatingMapper(totalEventCount)).setParallelism(1);
LOG.info("Starting consuming topology");
tryExecute(see, "Consuming topo");
LOG.info("Consuming topo finished");
} catch (Exception e) {
LOG.warn("Error while running consuming topology", e);
errorHandler.set(e);
}
}
};
return new Thread(exactlyOnceValidationConsumer);
}
示例8: testTumblingTimeWindow
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
@Test
public void testTumblingTimeWindow() {
final int NUM_ELEMENTS_PER_KEY = 3000;
final int WINDOW_SIZE = 100;
final int NUM_KEYS = 100;
FailingSource.reset();
try {
StreamExecutionEnvironment env = StreamExecutionEnvironment.createRemoteEnvironment(
"localhost", cluster.getLeaderRPCPort());
env.setParallelism(PARALLELISM);
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
env.enableCheckpointing(100);
env.setRestartStrategy(RestartStrategies.fixedDelayRestart(3, 0));
env.getConfig().disableSysoutLogging();
env.setStateBackend(this.stateBackend);
env
.addSource(new FailingSource(NUM_KEYS, NUM_ELEMENTS_PER_KEY, NUM_ELEMENTS_PER_KEY / 3))
.rebalance()
.keyBy(0)
.timeWindow(Time.of(WINDOW_SIZE, MILLISECONDS))
.apply(new RichWindowFunction<Tuple2<Long, IntType>, Tuple4<Long, Long, Long, IntType>, Tuple, TimeWindow>() {
private boolean open = false;
@Override
public void open(Configuration parameters) {
assertEquals(PARALLELISM, getRuntimeContext().getNumberOfParallelSubtasks());
open = true;
}
@Override
public void apply(
Tuple tuple,
TimeWindow window,
Iterable<Tuple2<Long, IntType>> values,
Collector<Tuple4<Long, Long, Long, IntType>> out) {
// validate that the function has been opened properly
assertTrue(open);
int sum = 0;
long key = -1;
for (Tuple2<Long, IntType> value : values) {
sum += value.f1.value;
key = value.f0;
}
out.collect(new Tuple4<>(key, window.getStart(), window.getEnd(), new IntType(sum)));
}
})
.addSink(new ValidatingSink(NUM_KEYS, NUM_ELEMENTS_PER_KEY / WINDOW_SIZE)).setParallelism(1);
tryExecute(env, "Tumbling Window Test");
}
catch (Exception e) {
e.printStackTrace();
fail(e.getMessage());
}
}
示例9: runBrokerFailureTest
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
public void runBrokerFailureTest() throws Exception {
final String topic = "brokerFailureTestTopic";
final int parallelism = 2;
final int numElementsPerPartition = 1000;
final int totalElements = parallelism * numElementsPerPartition;
final int failAfterElements = numElementsPerPartition / 3;
createTestTopic(topic, parallelism, 2);
DataGenerators.generateRandomizedIntegerSequence(
StreamExecutionEnvironment.createRemoteEnvironment("localhost", flinkPort),
kafkaServer,
topic, parallelism, numElementsPerPartition, true);
// find leader to shut down
int leaderId = kafkaServer.getLeaderToShutDown(topic);
LOG.info("Leader to shutdown {}", leaderId);
// run the topology (the consumers must handle the failures)
DeserializationSchema<Integer> schema =
new TypeInformationSerializationSchema<>(BasicTypeInfo.INT_TYPE_INFO, new ExecutionConfig());
StreamExecutionEnvironment env = StreamExecutionEnvironment.createRemoteEnvironment("localhost", flinkPort);
env.setParallelism(parallelism);
env.enableCheckpointing(500);
env.setRestartStrategy(RestartStrategies.noRestart());
env.getConfig().disableSysoutLogging();
Properties props = new Properties();
props.putAll(standardProps);
props.putAll(secureProps);
FlinkKafkaConsumerBase<Integer> kafkaSource = kafkaServer.getConsumer(topic, schema, props);
env
.addSource(kafkaSource)
.map(new PartitionValidatingMapper(parallelism, 1))
.map(new BrokerKillingMapper<Integer>(leaderId, failAfterElements))
.addSink(new ValidatingExactlyOnceSink(totalElements)).setParallelism(1);
BrokerKillingMapper.killedLeaderBefore = false;
tryExecute(env, "Broker failure once test");
// start a new broker:
kafkaServer.restartBroker(leaderId);
}
示例10: testPreAggregatedTumblingTimeWindow
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
@Test
public void testPreAggregatedTumblingTimeWindow() {
final int NUM_ELEMENTS_PER_KEY = 3000;
final int WINDOW_SIZE = 100;
final int NUM_KEYS = 100;
FailingSource.reset();
try {
StreamExecutionEnvironment env = StreamExecutionEnvironment.createRemoteEnvironment(
"localhost", cluster.getLeaderRPCPort());
env.setParallelism(PARALLELISM);
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
env.enableCheckpointing(100);
env.setRestartStrategy(RestartStrategies.fixedDelayRestart(3, 0));
env.getConfig().disableSysoutLogging();
env.setStateBackend(this.stateBackend);
env
.addSource(new FailingSource(NUM_KEYS, NUM_ELEMENTS_PER_KEY, NUM_ELEMENTS_PER_KEY / 3))
.rebalance()
.keyBy(0)
.timeWindow(Time.of(WINDOW_SIZE, MILLISECONDS))
.reduce(
new ReduceFunction<Tuple2<Long, IntType>>() {
@Override
public Tuple2<Long, IntType> reduce(
Tuple2<Long, IntType> a,
Tuple2<Long, IntType> b) {
return new Tuple2<>(a.f0, new IntType(a.f1.value + b.f1.value));
}
},
new RichWindowFunction<Tuple2<Long, IntType>, Tuple4<Long, Long, Long, IntType>, Tuple, TimeWindow>() {
private boolean open = false;
@Override
public void open(Configuration parameters) {
assertEquals(PARALLELISM, getRuntimeContext().getNumberOfParallelSubtasks());
open = true;
}
@Override
public void apply(
Tuple tuple,
TimeWindow window,
Iterable<Tuple2<Long, IntType>> input,
Collector<Tuple4<Long, Long, Long, IntType>> out) {
// validate that the function has been opened properly
assertTrue(open);
for (Tuple2<Long, IntType> in: input) {
out.collect(new Tuple4<>(in.f0,
window.getStart(),
window.getEnd(),
in.f1));
}
}
})
.addSink(new ValidatingSink(NUM_KEYS, NUM_ELEMENTS_PER_KEY / WINDOW_SIZE)).setParallelism(1);
tryExecute(env, "Tumbling Window Test");
}
catch (Exception e) {
e.printStackTrace();
fail(e.getMessage());
}
}
示例11: testPreAggregatedSlidingTimeWindow
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
@Test
public void testPreAggregatedSlidingTimeWindow() {
final int NUM_ELEMENTS_PER_KEY = 3000;
final int WINDOW_SIZE = 1000;
final int WINDOW_SLIDE = 100;
final int NUM_KEYS = 100;
FailingSource.reset();
try {
StreamExecutionEnvironment env = StreamExecutionEnvironment.createRemoteEnvironment(
"localhost", cluster.getLeaderRPCPort());
env.setParallelism(PARALLELISM);
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
env.enableCheckpointing(100);
env.setRestartStrategy(RestartStrategies.fixedDelayRestart(3, 0));
env.getConfig().disableSysoutLogging();
env.setStateBackend(this.stateBackend);
env
.addSource(new FailingSource(NUM_KEYS, NUM_ELEMENTS_PER_KEY, NUM_ELEMENTS_PER_KEY / 3))
.rebalance()
.keyBy(0)
.timeWindow(Time.of(WINDOW_SIZE, MILLISECONDS), Time.of(WINDOW_SLIDE, MILLISECONDS))
.reduce(
new ReduceFunction<Tuple2<Long, IntType>>() {
@Override
public Tuple2<Long, IntType> reduce(
Tuple2<Long, IntType> a,
Tuple2<Long, IntType> b) {
// validate that the function has been opened properly
return new Tuple2<>(a.f0, new IntType(a.f1.value + b.f1.value));
}
},
new RichWindowFunction<Tuple2<Long, IntType>, Tuple4<Long, Long, Long, IntType>, Tuple, TimeWindow>() {
private boolean open = false;
@Override
public void open(Configuration parameters) {
assertEquals(PARALLELISM, getRuntimeContext().getNumberOfParallelSubtasks());
open = true;
}
@Override
public void apply(
Tuple tuple,
TimeWindow window,
Iterable<Tuple2<Long, IntType>> input,
Collector<Tuple4<Long, Long, Long, IntType>> out) {
// validate that the function has been opened properly
assertTrue(open);
for (Tuple2<Long, IntType> in: input) {
out.collect(new Tuple4<>(in.f0,
window.getStart(),
window.getEnd(),
in.f1));
}
}
})
.addSink(new ValidatingSink(NUM_KEYS, NUM_ELEMENTS_PER_KEY / WINDOW_SLIDE)).setParallelism(1);
tryExecute(env, "Tumbling Window Test");
}
catch (Exception e) {
e.printStackTrace();
fail(e.getMessage());
}
}
示例12: testTaskManagerFailure
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
@Override
public void testTaskManagerFailure(int jobManagerPort, final File coordinateDir) throws Exception {
final File tempCheckpointDir = tempFolder.newFolder();
StreamExecutionEnvironment env = StreamExecutionEnvironment
.createRemoteEnvironment("localhost", jobManagerPort);
env.setParallelism(PARALLELISM);
env.getConfig().disableSysoutLogging();
env.setRestartStrategy(RestartStrategies.fixedDelayRestart(1, 1000));
env.enableCheckpointing(200);
env.setStateBackend(new FsStateBackend(tempCheckpointDir.getAbsoluteFile().toURI()));
DataStream<Long> result = env.addSource(new SleepyDurableGenerateSequence(coordinateDir, DATA_COUNT))
// add a non-chained no-op map to test the chain state restore logic
.map(new MapFunction<Long, Long>() {
@Override
public Long map(Long value) throws Exception {
return value;
}
}).startNewChain()
// populate the coordinate directory so we can proceed to TaskManager failure
.map(new Mapper(coordinateDir));
//write result to temporary file
result.addSink(new CheckpointedSink(DATA_COUNT));
try {
// blocking call until execution is done
env.execute();
// TODO: Figure out why this fails when ran with other tests
// Check whether checkpoints have been cleaned up properly
// assertDirectoryEmpty(tempCheckpointDir);
}
finally {
// clean up
if (tempCheckpointDir.exists()) {
FileUtils.deleteDirectory(tempCheckpointDir);
}
}
}
示例13: runFailOnDeployTest
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
/**
* Tests that the source can be properly canceled when reading full partitions.
*/
public void runFailOnDeployTest() throws Exception {
final String topic = "failOnDeployTopic";
createTestTopic(topic, 2, 1);
DeserializationSchema<Integer> schema =
new TypeInformationSerializationSchema<>(BasicTypeInfo.INT_TYPE_INFO, new ExecutionConfig());
StreamExecutionEnvironment env = StreamExecutionEnvironment.createRemoteEnvironment("localhost", flinkPort);
env.setParallelism(12); // needs to be more that the mini cluster has slots
env.getConfig().disableSysoutLogging();
Properties props = new Properties();
props.putAll(standardProps);
props.putAll(secureProps);
FlinkKafkaConsumerBase<Integer> kafkaSource = kafkaServer.getConsumer(topic, schema, props);
env
.addSource(kafkaSource)
.addSink(new DiscardingSink<Integer>());
try {
env.execute("test fail on deploy");
fail("this test should fail with an exception");
}
catch (ProgramInvocationException e) {
// validate that we failed due to a NoResourceAvailableException
Throwable cause = e.getCause();
int depth = 0;
boolean foundResourceException = false;
while (cause != null && depth++ < 20) {
if (cause instanceof NoResourceAvailableException) {
foundResourceException = true;
break;
}
cause = cause.getCause();
}
assertTrue("Wrong exception", foundResourceException);
}
deleteTestTopic(topic);
}
示例14: testTimestamps
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
/**
* Kafka 0.10 specific test, ensuring Timestamps are properly written to and read from Kafka
*/
@Test(timeout = 60000)
public void testTimestamps() throws Exception {
final String topic = "tstopic";
createTestTopic(topic, 3, 1);
// ---------- Produce an event time stream into Kafka -------------------
StreamExecutionEnvironment env = StreamExecutionEnvironment.createRemoteEnvironment("localhost", flinkPort);
env.setParallelism(1);
env.getConfig().setRestartStrategy(RestartStrategies.noRestart());
env.getConfig().disableSysoutLogging();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
DataStream<Long> streamWithTimestamps = env.addSource(new SourceFunction<Long>() {
boolean running = true;
@Override
public void run(SourceContext<Long> ctx) throws Exception {
long i = 0;
while(running) {
ctx.collectWithTimestamp(i, i*2);
if(i++ == 1000L) {
running = false;
}
}
}
@Override
public void cancel() {
running = false;
}
});
final TypeInformationSerializationSchema<Long> longSer = new TypeInformationSerializationSchema<>(TypeInfoParser.<Long>parse("Long"), env.getConfig());
FlinkKafkaProducer010.FlinkKafkaProducer010Configuration prod = FlinkKafkaProducer010.writeToKafkaWithTimestamps(streamWithTimestamps, topic, new KeyedSerializationSchemaWrapper<>(longSer), standardProps, new KafkaPartitioner<Long>() {
@Override
public int partition(Long next, byte[] serializedKey, byte[] serializedValue, int numPartitions) {
return (int)(next % 3);
}
});
prod.setParallelism(3);
prod.setWriteTimestampToKafka(true);
env.execute("Produce some");
// ---------- Consume stream from Kafka -------------------
env = StreamExecutionEnvironment.createRemoteEnvironment("localhost", flinkPort);
env.setParallelism(1);
env.getConfig().setRestartStrategy(RestartStrategies.noRestart());
env.getConfig().disableSysoutLogging();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
FlinkKafkaConsumer010<Long> kafkaSource = new FlinkKafkaConsumer010<>(topic, new LimitedLongDeserializer(), standardProps);
kafkaSource.assignTimestampsAndWatermarks(new AssignerWithPunctuatedWatermarks<Long>() {
@Nullable
@Override
public Watermark checkAndGetNextWatermark(Long lastElement, long extractedTimestamp) {
if(lastElement % 10 == 0) {
return new Watermark(lastElement);
}
return null;
}
@Override
public long extractTimestamp(Long element, long previousElementTimestamp) {
return previousElementTimestamp;
}
});
DataStream<Long> stream = env.addSource(kafkaSource);
GenericTypeInfo<Object> objectTypeInfo = new GenericTypeInfo<>(Object.class);
stream.transform("timestamp validating operator", objectTypeInfo, new TimestampValidatingOperator()).setParallelism(1);
env.execute("Consume again");
deleteTestTopic(topic);
}
示例15: runAutoOffsetResetTest
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; //导入方法依赖的package包/类
public void runAutoOffsetResetTest() throws Exception {
final String topic = "auto-offset-reset-test";
final int parallelism = 1;
final int elementsPerPartition = 50000;
Properties tprops = new Properties();
tprops.setProperty("retention.ms", "250");
kafkaServer.createTestTopic(topic, parallelism, 1, tprops);
final StreamExecutionEnvironment env =
StreamExecutionEnvironment.createRemoteEnvironment("localhost", flink.getLeaderRPCPort());
env.setParallelism(parallelism);
env.setRestartStrategy(RestartStrategies.noRestart()); // fail immediately
env.getConfig().disableSysoutLogging();
// ----------- add producer dataflow ----------
DataStream<String> stream = env.addSource(new RichParallelSourceFunction<String>() {
private boolean running = true;
@Override
public void run(SourceContext<String> ctx) throws InterruptedException {
int cnt = getRuntimeContext().getIndexOfThisSubtask() * elementsPerPartition;
int limit = cnt + elementsPerPartition;
while (running && !stopProducer && cnt < limit) {
ctx.collect("element-" + cnt);
cnt++;
Thread.sleep(10);
}
LOG.info("Stopping producer");
}
@Override
public void cancel() {
running = false;
}
});
Properties props = new Properties();
props.putAll(standardProps);
props.putAll(secureProps);
kafkaServer.produceIntoKafka(stream, topic, new KeyedSerializationSchemaWrapper<>(new SimpleStringSchema()), props, null);
// ----------- add consumer dataflow ----------
NonContinousOffsetsDeserializationSchema deserSchema = new NonContinousOffsetsDeserializationSchema();
FlinkKafkaConsumerBase<String> source = kafkaServer.getConsumer(topic, deserSchema, props);
DataStreamSource<String> consuming = env.addSource(source);
consuming.addSink(new DiscardingSink<String>());
tryExecute(env, "run auto offset reset test");
kafkaServer.deleteTestTopic(topic);
}