当前位置: 首页>>代码示例>>C#>>正文


C# PriorityQueue.Remove方法代码示例

本文整理汇总了C#中System.Collections.Generic.PriorityQueue.Remove方法的典型用法代码示例。如果您正苦于以下问题:C# PriorityQueue.Remove方法的具体用法?C# PriorityQueue.Remove怎么用?C# PriorityQueue.Remove使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在System.Collections.Generic.PriorityQueue的用法示例。


在下文中一共展示了PriorityQueue.Remove方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: Remove

        public void Remove()
        {
            PriorityQueue<int> p = new PriorityQueue<int>(delegate(int i, int j) { return i - j; });
            Random r = new Random();
            for(int i = 0; i < 10000; ++i) {
                p.Enqueue(r.Next(1000));
            }

            int removed = 0;
            while(removed < 100) {
                int count = p.Count;
                p.Remove(r.Next(1000));
                if(count > p.Count) {
                    ++removed;
                }
            }

            int item = p.Dequeue();
            while(p.Count > 0) {
                int next = p.Dequeue();
                if(next < item) {
                    Assert.Fail("bad order detected");
                }
            }
        }
开发者ID:maximmass,项目名称:DReAM,代码行数:25,代码来源:PriorityQueueTests.cs

示例2: AStar

 public List<Vector2> AStar(Vector2 startPosition, Vector2 targetPosition)
 {
     DNode2 startNode = graph.GetNode(startPosition);
     DNode2 targetNode = graph.GetNode(targetPosition);
     List<Vector2> positions = new List<Vector2>();
     PriorityQueue<DNode2> pq = new PriorityQueue<DNode2>();
     foreach (DNode2 d in graph.adjList.Keys)
     {
         d.Weight = 9999999;
         pq.Add(d);
     }
     startNode.Weight = 0;
     while (!pq.Empty())
     {
         DNode2 n = pq.Remove();
         positions.Add(n.Coords);
         if (n.Coords == targetPosition + new Vector2(80, 80))
         {
             positions.TrimExcess();
             return positions;
         }
         foreach (Edge e in graph.adjList[n])
         {
             DNode2 z = e.GetOpposite(n);
             double r = e.Weight + Vector2.Distance(z.Coords, targetPosition);
             if (r < z.Weight)
             {
                 z.Weight = r;
                 try
                 {
                     pq.Remove(z);
                 }
                 catch (ArgumentException)
                 {
                     continue;
                 }
                 pq.Add(z);
             }
         }
     }
     return positions;
 }
开发者ID:jdesai927,项目名称:C-libs,代码行数:42,代码来源:Dijkstra.cs

示例3: Update

        private void Update(List<KNNPoint> neighbors,
            VectorDataOptics centerObject, PriorityQueue<VectorDataOptics> orderSeeds)
        {
            var cDist = centerObject.CoreDistance;

            foreach (var obj in neighbors)
            {
                var op = obj.Data as VectorDataOptics;
                if (!op.Visited)
                {
                    var newRDistance = Math.Max(cDist, DistanceFunction
                            .CalculateDistance(op, centerObject));

                    if (double.IsPositiveInfinity(op.ReachabilityDistance))
                    {
                        op.ReachabilityDistance = newRDistance;
                        orderSeeds.Add(op);
                    }
                    else
                    {
                        if (newRDistance < op.ReachabilityDistance)
                        {
                            op.ReachabilityDistance = newRDistance;
                            orderSeeds.Remove(op);
                            orderSeeds.Add(op);
                        }
                    }
                }
            }
        }
开发者ID:ABaboshin,项目名称:FrequentDataMining,代码行数:30,代码来源:OPTICS.cs

示例4: RemoveTest

        public void RemoveTest()
        {
            PriorityQueue<int> actual = new PriorityQueue<int>();

            actual.Remove(120);
        }
开发者ID:robertrancz,项目名称:dsa,代码行数:6,代码来源:PriorityQueueTest.cs

示例5: GetPath

        public List<MapTile> GetPath(Point start, Point goal) {
            var startTile = GetTile(start);
            var goalTile = GetTile(goal);

            // check that the start and goal positions are valid, and are not the same
            if (!Within(start) || !Within(goal) || start == goal || startTile == null || goalTile == null) {
                return new List<MapTile>();
            }
            // Check that start and goal are walkable and that a path can exist between them
            if (startTile.Set != goalTile.Set) {
                return new List<MapTile>();
            }


            // reset costs
            foreach (var t in _tiles) {
                t.F = t.G = float.MaxValue;
            }
            var open = new PriorityQueue<MapTile>(_tiles.Length);
            var closed = new HashSet<MapTile>();

            startTile.G = 0;
            startTile.F = h(start, goal);

            open.Enqueue(startTile, startTile.F);

            MapTile current = null;
            while (open.Any() && current != goalTile) {
                current = open.Dequeue();
                closed.Add(current);
                for (var i = 0; i < 8; i++) {
                    var edge = current.Edges[i];

                    if (edge == null) {
                        continue;
                    }
                    var neighbor = edge.Node2;
                    var cost = current.G + edge.Cost;



                    if (open.Contains(neighbor) && cost < neighbor.G) {
                        open.Remove(neighbor);
                    }
                    if (closed.Contains(neighbor) && cost < neighbor.G) {
                        closed.Remove(neighbor);
                    }
                    if (!open.Contains(neighbor) && !closed.Contains(neighbor)) {
                        neighbor.G = cost;
                        var f = cost + h(neighbor.MapPosition, goal);
                        open.Enqueue(neighbor, f);
                        neighbor.Parent = current;

                    }
                }
            }
            System.Diagnostics.Debug.Assert(current == goalTile);
            var path = new List<MapTile>();


            while (current != startTile) {
                path.Add(current);
                current = current.Parent;
            }
            path.Reverse();
            return path;
        }
开发者ID:amitprakash07,项目名称:dx11,代码行数:67,代码来源:Terrain.cs

示例6: Cluster

        /**
         * Now the Agglomerative Clustering. May want to pass in additional parameters, like the termination
         * criteria and parameters.
         * Assumes list of colors are in row-order
         **/
        public void Cluster(List<CIELAB> colors, int width, int height)
        {
            double maxDist = 50*10;
            SortedSet<int> activeClusterIds = new SortedSet<int>();
            String logFile = "log.txt";
            StreamWriter log = File.AppendText(logFile);
            log.WriteLine("\n\tCluster Spatial Run " + DateTime.Now.ToString());
            log.Flush();

            //the smaller id comes first in the dictionary for pairwise distances
            PriorityQueue<Tuple<int, int>, double> pq = new PriorityQueue<Tuple<int, int>, double>();

            clusters = new Dictionary<int, PixelCluster>();

            int counter = 0;

            //Initialize the clusters in row-order
            for (int j = 0; j < height; j++)
            {
                for (int i = 0; i < width; i++)
                {
                    activeClusterIds.Add(counter);
                    PixelCluster p = new PixelCluster(counter, colors[width * j + i]);
                    counter++;

                    //Initialize the 4-neighbors
                    if (i > 0)
                        p.neighbors.Add(ToIndex(i - 1, j, width));
                    if (j > 0)
                        p.neighbors.Add(ToIndex(i, j - 1, width));
                    if (i < width - 1)
                        p.neighbors.Add(ToIndex(i + 1, j, width));
                    if (j < height - 1)
                        p.neighbors.Add(ToIndex(i, j + 1, width));

                    clusters.Add(p.id, p);
                }
            }

            foreach (int i in activeClusterIds)
            {
                //calculate distances to neighbors larger than current id
                SortedSet<int> neighbors = Simplify(clusters[i].neighbors);
                foreach (int j in neighbors)
                {
                    if (i < j)
                    {
                        pq.Enqueue(new Tuple<int, int>(i, j), -1*clusters[i].lab.SqDist(clusters[j].lab));
                    }
                }

            }

            Stopwatch timer = new Stopwatch();
            timer.Start();

            while (activeClusterIds.Count > 1)
            {

                //Find the pair with the smallest distance
                KeyValuePair<Tuple<int, int>, double> result = BestPair(pq, activeClusterIds);
                Tuple<int, int> pair = result.Key;
                double bestDist = -1*result.Value;

                Console.WriteLine("num clusters: " + activeClusterIds.Count());

                if (bestDist > maxDist)
                    break;

                PixelCluster a = clusters[pair.Item1];
                PixelCluster b = clusters[pair.Item2];

                //Create a new cluster with unique id
                PixelCluster merged = new PixelCluster();
                merged.id = counter++;
                merged.lab = (a.lab * a.count + b.lab * b.count) / (a.count + b.count);
                merged.count = a.count + b.count;
                merged.children = new int[] { a.id, b.id };
                merged.neighbors = MergeNeighbors(a.id, b.id);
                merged.parentId = merged.id;
                a.parentId = merged.id;
                b.parentId = merged.id;
                clusters.Add(merged.id, merged);

                //Update the active cluster set
                activeClusterIds.Remove(a.id);
                activeClusterIds.Remove(b.id);
                activeClusterIds.Add(merged.id);

                double totalCount = a.count + b.count;

                //Update the distances, based on old distances
                foreach (int i in merged.neighbors)
                {
                    //Debug.Assert(i != merged.id && activeClusterIds.Contains(i));
//.........这里部分代码省略.........
开发者ID:dritchie,项目名称:SceneColorMaterial,代码行数:101,代码来源:Clustering.cs

示例7: ClusterColorSpace

        //Cluster the final clusters into color space
        public void ClusterColorSpace()
        {
            double maxDist = 20*20;
            int minRegions = 5;

            SortedSet<int> activeClusterIds = new SortedSet<int>(rootIds);
            String logFile = "colorlog.txt";
            StreamWriter log = File.AppendText(logFile);
            log.WriteLine("\n\tCluster ColorSpace Run " + DateTime.Now.ToString());
            log.Flush();

            //the smaller id comes first in the dictionary for pairwise distances
            PriorityQueue<Tuple<int, int>, double> pq = new PriorityQueue<Tuple<int, int>, double>();

            int counter = activeClusterIds.Last()+1;

            int[] ids = activeClusterIds.ToArray<int>();

            //Calculate the initial distances
            for (int i = 0; i < ids.Count(); i++)
            {
                for (int j = i+1; j < ids.Count(); j++)
                {
                    //log.WriteLine(ids[i] + ", " + ids[j] + " dist " + -1 * clusters[ids[i]].lab.SqDist(clusters[ids[j]].lab));
                    //log.Flush();

                    //pq.Enqueue(new Tuple<int, int>(ids[i], ids[j]), -1 * clusters[ids[i]].lab.SqDist(clusters[ids[j]].lab));
                    PixelCluster a = clusters[ids[i]];
                    PixelCluster b = clusters[ids[j]];

                    double newDist = a.lab.SqDist(b.lab);

                    //Add in Ward's variance  (variation in Color Segmentation using Region Merging)
                    //http://www.mathworks.com/help/toolbox/stats/linkage.html
                    //newDist = newDist * Math.Sqrt(2 * a.count * b.count / (a.count + b.count));

                    pq.Enqueue(new Tuple<int, int>(ids[i], ids[j]), -1 * newDist);
                }
            }

            Stopwatch timer = new Stopwatch();
            timer.Start();

            while (activeClusterIds.Count > minRegions)
            {

                //Find the pair with the smallest distance
                KeyValuePair<Tuple<int, int>, double> result = BestPair(pq, activeClusterIds);
                Tuple<int, int> pair = result.Key;
                double bestDist = -1 * result.Value;

                Console.WriteLine("num clusters: " + activeClusterIds.Count());

                if (bestDist > maxDist)
                    break;

                PixelCluster a = clusters[pair.Item1];
                PixelCluster b = clusters[pair.Item2];

                //Create a new cluster with unique id, we don't care about the neighbors
                PixelCluster merged = new PixelCluster();
                merged.id = counter++;
                merged.lab = (a.lab * a.count + b.lab * b.count) / (a.count + b.count);
                merged.count = a.count + b.count;
                merged.children = new int[] { a.id, b.id };
                merged.parentId = merged.id;
                a.parentId = merged.id;
                b.parentId = merged.id;
                clusters.Add(merged.id, merged);

                //Update the active cluster set
                activeClusterIds.Remove(a.id);
                activeClusterIds.Remove(b.id);
                activeClusterIds.Add(merged.id);

                double totalCount = a.count + b.count;

                //Update the distances, based on old distances
                foreach (int i in activeClusterIds)
                {
                    if (i == merged.id)
                        continue;

                    //TODO: Ward's method with minimum variance
                    //For now, just use the dist between the centroids
                    PixelCluster c = clusters[i];
                    double newDist = merged.lab.SqDist(c.lab);

                    //Add in Ward's variance  (variation in Color Segmentation using Region Merging)
                    //http://www.mathworks.com/help/toolbox/stats/linkage.html
                    //newDist = newDist * Math.Sqrt(2*a.count * b.count / (a.count + b.count));

                    if (c.id < merged.id)
                        pq.Enqueue(new Tuple<int, int>(c.id, merged.id), -1 * newDist);
                    else
                        pq.Enqueue(new Tuple<int, int>(merged.id, c.id), -1 * newDist);

                }

//.........这里部分代码省略.........
开发者ID:dritchie,项目名称:SceneColorMaterial,代码行数:101,代码来源:Clustering.cs

示例8: ClusterColors

        public void ClusterColors(List<CIELAB> colors, int width, int height)
        {
            //Bin the colors
            int minRegions = 5;
            double maxDist = 10*10;
            SortedSet<int> activeClusterIds = new SortedSet<int>();
            String logFile = "log-colorspace.txt";
            StreamWriter log = File.AppendText(logFile);
            log.WriteLine("\n\tCluster Color Space " + DateTime.Now.ToString());
            log.Flush();

            //the smaller id comes first in the dictionary for pairwise distances
            PriorityQueue<Tuple<int, int>, double> pq = new PriorityQueue<Tuple<int, int>, double>();

            clusters = new Dictionary<int, PixelCluster>();
            int counter = 0;

            foreach (CIELAB color in colors)
            {
                //bin it into one of the clusters
                //index is a first, then b, then L
                int id = GetBinId(color);

                if (id > counter)
                    counter = id;

                if (!clusters.ContainsKey(id))
                {
                    clusters.Add(id, new PixelCluster(id, color));
                }
                else
                {
                    clusters[id].lab = (clusters[id].lab * clusters[id].count + color) / (clusters[id].count + 1);
                    clusters[id].count++;
                }
            }
            counter++;

            activeClusterIds = new SortedSet<int>(clusters.Keys);

            List<int> ids = activeClusterIds.ToList<int>();
            for (int i=0; i<ids.Count(); i++)
            {
                PixelCluster a = clusters[ids[i]];

                //calculate distances to neighbors larger than current id
                for (int j=i+1; j<ids.Count(); j++)
                {
                    PixelCluster b = clusters[ids[j]];

                    double newDist = a.lab.SqDist(b.lab);
                    //newDist = newDist * Math.Sqrt(2 * a.count * b.count / (a.count + b.count));
                    pq.Enqueue(new Tuple<int, int>(a.id, b.id), -1*newDist);
                }

            }

            Stopwatch timer = new Stopwatch();
            timer.Start();

            while (activeClusterIds.Count > minRegions)
            {
                //Find the pair with the smallest distance
                KeyValuePair<Tuple<int, int>, double> result = BestPair(pq, activeClusterIds);
                Tuple<int, int> pair = result.Key;
                double bestDist = -1 * result.Value;

                Console.WriteLine("num clusters: " + activeClusterIds.Count());

                if (bestDist > maxDist)
                    break;

                PixelCluster a = clusters[pair.Item1];
                PixelCluster b = clusters[pair.Item2];

                //Create a new cluster with unique id, don't care about neighbors
                PixelCluster merged = new PixelCluster();
                merged.id = counter++;
                merged.lab = (a.lab * a.count + b.lab * b.count) / (a.count + b.count);
                merged.count = a.count + b.count;
                merged.children = new int[] { a.id, b.id };
                merged.parentId = merged.id;
                a.parentId = merged.id;
                b.parentId = merged.id;
                clusters.Add(merged.id, merged);

                //Update the active cluster set
                activeClusterIds.Remove(a.id);
                activeClusterIds.Remove(b.id);
                activeClusterIds.Add(merged.id);

                double totalCount = a.count + b.count;

                //Update the distances, based on old distances
                foreach (int i in activeClusterIds)
                {
                    //Debug.Assert(i != merged.id && activeClusterIds.Contains(i));

                    //TODO: Ward's method with minimum variance
                    //For now, just use the dist between the centroids
//.........这里部分代码省略.........
开发者ID:dritchie,项目名称:SceneColorMaterial,代码行数:101,代码来源:Clustering.cs

示例9: TestRemove2

        public void TestRemove2()
        {
            var queue = new PriorityQueue<string> { "string", "anotherString" };

            var result = queue.Remove("someString");

            Assert.IsFalse(result);
            Assert.AreEqual(2, queue.Count);
        }
开发者ID:pkubryk,项目名称:SummerBatch,代码行数:9,代码来源:PriorityQueueTest.cs

示例10: TestRemove1

        public void TestRemove1()
        {
            var queue = new PriorityQueue<string> { "string", "anotherString" };

            var result = queue.Remove("string");

            Assert.IsTrue(result);
            Assert.AreEqual(1, queue.Count);
            Assert.IsFalse(queue.Contains("string"));
        }
开发者ID:pkubryk,项目名称:SummerBatch,代码行数:10,代码来源:PriorityQueueTest.cs


注:本文中的System.Collections.Generic.PriorityQueue.Remove方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。