本文整理汇总了C#中Rhino.Geometry.Curve.DuplicateCurve方法的典型用法代码示例。如果您正苦于以下问题:C# Curve.DuplicateCurve方法的具体用法?C# Curve.DuplicateCurve怎么用?C# Curve.DuplicateCurve使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Rhino.Geometry.Curve
的用法示例。
在下文中一共展示了Curve.DuplicateCurve方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: Edge
public Edge(Brep[] C, Curve i)
{
BasisCurve = i.DuplicateCurve();
}
示例2: AddCurve
/// <summary>
/// Adds a new, colored curve to the display list.
/// The curve will be duplicated so changes to the
/// original will not affect the display.
/// </summary>
/// <param name="curve">Curve to add.</param>
/// <param name="color">Color of curve.</param>
/// <param name="thickness">Thickness of curve.</param>
public void AddCurve(Curve curve, Color color, int thickness)
{
if (m_disposed) { throw new ObjectDisposedException("This CustomDisplay instance has been disposed and cannot be modified"); }
if (curve == null) { return; }
if (!curve.IsValid) { return; }
CDU_Curve cdu = new CDU_Curve();
cdu.m_curve = curve.DuplicateCurve();
cdu.m_color = Color.FromArgb(255, color);
cdu.m_thickness = thickness;
m_curves.Add(cdu);
m_clip.Union(cdu.m_curve.GetBoundingBox(false));
}
示例3: convCurve
internal static IfcBoundedCurve convCurve(DatabaseIfc db, Curve crv, IfcCartesianPoint optStrt, bool twoD, out IfcCartesianPoint end)
{
double tol = db.Tolerance;
end = null;
Curve c = crv.DuplicateCurve();
if (c.IsLinear(tol))
{
if (twoD)
end = new IfcCartesianPoint(db, new Point2d(c.PointAtEnd.X, c.PointAtEnd.Y));
else
end = new IfcCartesianPoint(db, c.PointAtEnd);
if (optStrt == null)
{
if (twoD)
optStrt = new IfcCartesianPoint(db, new Point2d(c.PointAtStart.X, c.PointAtStart.Y));
else
optStrt = new IfcCartesianPoint(db, c.PointAtStart);
}
return new IfcPolyline(optStrt, end);
}
ArcCurve ac = c as ArcCurve;
if (ac != null)
return new IfcTrimmedCurve(db, ac.Arc, twoD, optStrt, out end);
Arc arc = Arc.Unset;
if (c.TryGetArc(out arc, tol))
return new IfcTrimmedCurve(db, arc, twoD, optStrt, out end);
Polyline pl = new Polyline();
if (c.TryGetPolyline(out pl))
{
if (db.mRelease != ReleaseVersion.IFC2x3 && db.mRelease != ReleaseVersion.IFC4)
{
if (twoD)
return new IfcIndexedPolyCurve(new IfcCartesianPointList2D(db, pl.ConvertAll(x => new Point2d(x.X, x.Y))));
else
return new IfcIndexedPolyCurve(new IfcCartesianPointList3D(db, pl));
}
List<IfcCartesianPoint> cps = new List<IfcCartesianPoint>();
if (twoD)
{
Point2d p = new Point2d(pl[0].X, pl[0].Y), n;
cps.Add(new IfcCartesianPoint(db, p));
for (int icounter = 1; icounter < pl.Count - 1; icounter++)
{
n = new Point2d(pl[icounter].X, pl[icounter].Y);
if (n.DistanceTo(p) > tol)
{
cps.Add(new IfcCartesianPoint(db, n));
p = n;
}
}
n = new Point2d(pl[pl.Count - 1].X, pl[pl.Count - 1].Y);
if (n.DistanceTo(p) > tol)
{
if (pl.IsClosed)
cps.Add(cps[0]);
else
cps.Add(new IfcCartesianPoint(db, n));
}
}
else
{
Point3d p = pl[0], n;
cps.Add(new IfcCartesianPoint(db, p));
for (int icounter = 1; icounter < pl.Count; icounter++)
{
n = pl[icounter];
if (n.DistanceTo(p) > tol)
{
cps.Add(new IfcCartesianPoint(db, n));
p = n;
}
}
}
return new IfcPolyline(cps);
}
PolyCurve plc = c as PolyCurve;
if (plc != null)
{
if (db.mRelease != ReleaseVersion.IFC2x3 && db.mRelease != ReleaseVersion.IFC4)
{
IfcIndexedPolyCurve ipc = IfcIndexedPolyCurve.Convert(db, plc, twoD);
if (ipc != null)
return ipc;
}
return new IfcCompositeCurve(db, plc, twoD);
}
if (db.mRelease != ReleaseVersion.IFC2x3)
{
NurbsCurve nc = c as NurbsCurve;
if (nc != null)
{
if (nc.IsRational)
return new IfcRationalBSplineCurveWithKnots(db, nc, twoD);
return new IfcBSplineCurveWithKnots(db, nc, twoD);
}
}
return null;
}