本文整理汇总了C#中Rhino.Geometry.Curve类的典型用法代码示例。如果您正苦于以下问题:C# Curve类的具体用法?C# Curve怎么用?C# Curve使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
Curve类属于Rhino.Geometry命名空间,在下文中一共展示了Curve类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: LineSource
public LineSource(Curve SrcPath, String Code, int el_m, int SrcID, Phase_Regime ph)
:base(new double[8]{60, 49, 41, 35, 31, 28, 26, 24}, new Point3d(0,0,0), ph, SrcID)
{
string type = SrcPath.GetUserString("SourceType");
if (type == "Aircraft (ANCON derived)")
{
double velocity = double.Parse(SrcPath.GetUserString("Velocity"));
double delta = double.Parse(SrcPath.GetUserString("delta"));
D = new ANCON(delta, velocity);
}
else D = new Simple();
samplespermeter = el_m;
Curve = SrcPath;
//Divide curve up in ~equal length segments.
Samples = Curve.DivideEquidistant(1.0 / (double)samplespermeter);
Level = Utilities.PachTools.DecodeSourcePower(Code);
Power = new double[8];
double PowerMod = Curve.GetLength() / (double)Samples.Length;
for (int oct = 0; oct < 8; oct++) Power[oct] = 1E-12 * Math.Pow(10, .1 * Level[oct]) * PowerMod;
}
示例2: SilkwormSegment
public SilkwormSegment(Curve curve, int mainSegmentCount, int subSegmentCount, double maxAngleRadians, double maxChordLengthRatio, double maxAspectRatio, double tolerance, double minEdgeLength, double maxEdgeLength, bool keepStartPoint)
{
if (curve != null)
{
//See if curve can be represented as a polyline already
if (curve.TryGetPolyline(out Pline))
{
PolylineCurve plinecurve = new PolylineCurve(Pline);
//Segments = plinecurve.DuplicateSegments().ToList();
Segments = DuplicateSegments(plinecurve);
}
//Try to see if conversion will work
if (curve.ToPolyline(mainSegmentCount, subSegmentCount, maxAngleRadians, maxChordLengthRatio, maxAspectRatio, tolerance, minEdgeLength, maxEdgeLength, keepStartPoint) != null)
{
//Convert
PolylineCurve plinec = curve.ToPolyline(mainSegmentCount, subSegmentCount, maxAngleRadians, maxChordLengthRatio, maxAspectRatio, tolerance, minEdgeLength, maxEdgeLength, keepStartPoint);
if (plinec.TryGetPolyline(out Pline))
{
PolylineCurve plinecurve = new PolylineCurve(Pline);
//Segments = plinecurve.DuplicateSegments().ToList();
Segments = DuplicateSegments(plinecurve);
}
}
}
}
示例3: Curves
/// <summary>
/// Use 0 as max if you do not want to set it.
/// </summary>
/// <param name="min">The minimun number of lines</param>
/// <param name="max">The maximum, as in GetObject.GetMultiple()</param>
/// <param name="lines"></param>
/// <returns>True if the getting supplied the requested lines, false otherwise.</returns>
public bool Curves(int min, int max, out Curve[] lines)
{
GetResult a;
if (min == 1 && max == 1)
a = this.Get();
else
a = this.GetMultiple(min, max);
if (a == GetResult.Object)
{
if (this.ObjectCount > 0)
{
int realCount = 0;
lines = new Curve[this.ObjectCount];
for (int i = 0; i < this.ObjectCount; i++)
{
Curve c = this.Object(i).Curve();
if (c != null && c.IsValid)
{
lines[realCount++] = c;
}
}
Array.Resize(ref lines, realCount);
return true;
}
}
lines = null;
return false;
}
示例4: CurveCP
public void CurveCP(Brep x, Curve y, int V, int U)
{
int u = bitmap1.Size.Width;
int v = bitmap1.Size.Height;
Graphics g = Graphics.FromImage(bitmap1);
g.FillRectangle(new SolidBrush(Color.White), 0, 0, u, v);
System.Drawing.SolidBrush myBrush = new System.Drawing.SolidBrush(Color.Black);
float step1 = u / U;
float step2 = v / V;
for (float i = 25; i < u - 25; i += step1)
{
for (float j = 25; j < v - 25; j += step2)
{
double Umin = x.Faces[0].Domain(0).Min;
double Umax = x.Faces[0].Domain(0).Max;
double Vmin = x.Faces[0].Domain(1).Min;
double Vmax = x.Faces[0].Domain(1).Max;
Point3d pos = x.Faces[0].PointAt(i / u * (Umax - Umin) + Umin, j / v * (Vmax - Vmin) + Vmin);
double t; float R;
if (y.ClosestPoint(pos, out t, 200))
{
double dis = y.PointAt(t).DistanceTo(pos);
dis /= 200;
R = (float)(1 / dis * 2);
if (R > 40) R = 40;
}
else { R = 20; }
g.FillEllipse(myBrush, i - R, v - j - R, R * 2, R * 2);
}
}
myBrush.Dispose();
g.Dispose();
}
示例5: Create
/// <summary>
/// Constructs a new surface of revolution from a generatrix curve and an axis.
/// <para>This overload accepts a slice start and end angles.</para>
/// </summary>
/// <param name="revoluteCurve">A generatrix.</param>
/// <param name="axisOfRevolution">An axis.</param>
/// <param name="startAngleRadians">An angle in radias for the start.</param>
/// <param name="endAngleRadians">An angle in radias for the end.</param>
/// <returns>A new surface of revolution, or null if any of the inputs is invalid or on error.</returns>
public static RevSurface Create(Curve revoluteCurve, Line axisOfRevolution, double startAngleRadians, double endAngleRadians)
{
IntPtr pConstCurve = revoluteCurve.ConstPointer();
IntPtr pRevSurface = UnsafeNativeMethods.ON_RevSurface_Create(pConstCurve, ref axisOfRevolution, startAngleRadians, endAngleRadians);
if (IntPtr.Zero == pRevSurface)
return null;
return new RevSurface(pRevSurface, null);
}
示例6: DeviationConduit
public DeviationConduit(Curve curveA, Curve curveB, Point3d minDistPointA, Point3d minDistPointB, Point3d maxDistPointA, Point3d maxDistPointB)
{
m_curve_a = curveA;
m_curve_b = curveB;
m_min_dist_point_a = minDistPointA;
m_min_dist_point_b = minDistPointB;
m_max_dist_point_a = maxDistPointA;
m_max_dist_point_b = maxDistPointB;
}
示例7: Create
/// <summary>
/// Constructs a new sum surface by extruding a curve A along a path B.
/// </summary>
/// <param name="curveA">The curve used as extrusion profile.</param>
/// <param name="curveB">The curve used as path.</param>
/// <returns>A new sum surface on success; null on failure.</returns>
public static SumSurface Create(Curve curveA, Curve curveB)
{
IntPtr pConstCurveA = curveA.ConstPointer();
IntPtr pConstCurveB = curveB.ConstPointer();
IntPtr pSumSurface = UnsafeNativeMethods.ON_SumSurface_Create(pConstCurveA, pConstCurveB);
if (IntPtr.Zero == pSumSurface)
return null;
return new SumSurface(pSumSurface, null);
}
示例8: Compute
/// <summary>
/// Computes an AreaMassProperties for a closed planar curve.
/// </summary>
/// <param name="closedPlanarCurve">Curve to measure.</param>
/// <param name="planarTolerance">absolute tolerance used to insure the closed curve is planar</param>
/// <returns>The AreaMassProperties for the given curve or null on failure.</returns>
/// <exception cref="System.ArgumentNullException">When closedPlanarCurve is null.</exception>
public static AreaMassProperties Compute(Curve closedPlanarCurve, double planarTolerance)
{
if (closedPlanarCurve == null)
throw new ArgumentNullException("closedPlanarCurve");
const double relativeTolerance = 1.0e-6;
const double absoluteTolerance = 1.0e-6;
IntPtr ptr = closedPlanarCurve.ConstPointer();
IntPtr rc = UnsafeNativeMethods.ON_Curve_AreaMassProperties(ptr, relativeTolerance, absoluteTolerance, planarTolerance);
return rc == IntPtr.Zero ? null : new AreaMassProperties(rc, false);
}
示例9: ConvertRhinoCommonCurve
public static IfcBoundedCurve ConvertRhinoCommonCurve(DatabaseIfc db, Curve crv)
{
double tol = db.Tolerance, angTol = Math.PI / 1800;
if (crv.IsLinear(tol))
return new IfcPolyline(new List<IfcCartesianPoint>() { new IfcCartesianPoint(db, crv.PointAtStart), new IfcCartesianPoint(db, crv.PointAtEnd) });
Plane pln = new Plane();
if (crv.TryGetPlane(out pln, tol))
{
if (Math.Abs(pln.Origin.Z) < tol && pln.ZAxis.IsParallelTo(Vector3d.ZAxis, angTol) != 0)
return convCurve(db, crv, true);
}
return convCurve(db, crv, false);
}
示例10: TryFitCircleTT
/// <summary>
/// Try to fit a circle to two curves using tangent relationships.
/// </summary>
/// <param name="c1">First curve to touch.</param>
/// <param name="c2">Second curve to touch.</param>
/// <param name="t1">Parameter on first curve close to desired solution.</param>
/// <param name="t2">Parameter on second curve closet to desired solution.</param>
/// <returns>Valid circle on success, Circle.Unset on failure.</returns>
public static Circle TryFitCircleTT(Curve c1, Curve c2, double t1, double t2)
{
if (c1 == null) { throw new ArgumentNullException("c1"); }
if (c2 == null) { throw new ArgumentNullException("c2"); }
if (!RhinoMath.IsValidDouble(t1)) { throw new ArgumentNullException("t1"); }
if (!RhinoMath.IsValidDouble(t2)) { throw new ArgumentNullException("t2"); }
Circle rc = Circle.Unset;
if (!UnsafeNativeMethods.ON_Circle_TryFitTT(c1.ConstPointer(), c2.ConstPointer(), t1, t2, ref rc))
rc = Circle.Unset;
return rc;
}
示例11: CreateCubicBeziers
/// <summary>
/// Constructs an array of cubic, non-rational beziers that fit a curve to a tolerance.
/// </summary>
/// <param name="sourceCurve">A curve to approximate.</param>
/// <param name="distanceTolerance">
/// The max fitting error. Use RhinoMath.SqrtEpsilon as a minimum.
/// </param>
/// <param name="kinkTolerance">
/// If the input curve has a g1-discontinuity with angle radian measure
/// greater than kinkTolerance at some point P, the list of beziers will
/// also have a kink at P.
/// </param>
/// <returns>A new array of bezier curves. The array can be empty and might contain null items.</returns>
public static BezierCurve[] CreateCubicBeziers(Curve sourceCurve, double distanceTolerance, double kinkTolerance)
{
IntPtr pConstCurve = sourceCurve.ConstPointer();
IntPtr pBezArray = UnsafeNativeMethods.ON_SimpleArray_BezierCurveNew();
int count = UnsafeNativeMethods.RHC_RhinoMakeCubicBeziers(pConstCurve, pBezArray, distanceTolerance, kinkTolerance);
BezierCurve[] rc = new BezierCurve[count];
for (int i = 0; i < count; i++)
{
IntPtr ptr = UnsafeNativeMethods.ON_SimpleArray_BezierCurvePtr(pBezArray, i);
if (ptr != IntPtr.Zero)
rc[i] = new BezierCurve(ptr);
}
UnsafeNativeMethods.ON_SimpleArray_BezierCurveDelete(pBezArray);
return rc;
}
示例12: ReactionDiffusion
public ReactionDiffusion(Mesh x, Curve y)
{
Vertice3.CreateCollection(x, out vs);
Random rnd = new Random();
for (int i = 0; i < vs.Count; i++)
{
Point3d P1 = new Point3d(vs[i].pos.X, vs[i].pos.Y, 0);
if (y.Contains(P1) == Rhino.Geometry.PointContainment.Inside)
{
vs[i].U = 0.5 * (rnd.NextDouble() * 2);
vs[i].V = 0.25 * (rnd.NextDouble() * 2);
}
}
}
示例13: ExtractTMesh
public static TurtleMesh ExtractTMesh(Curve c)
{
var m = new TurtleMesh();
Polyline pl;
c.TryGetPolyline(out pl);
TurtleFace f = new TurtleFace(pl.Count - 1);
for (int j = 0; j < pl.Count - 1; j++)
{
var v = pl[j];
f.Add(m.VertexCount);
m.AddVertex(new TurtleVertex((float)v.X, (float)v.Y, (float)v.Z));
}
m.AddFace(f);
return m;
}
示例14: NextintersectParamAndPoint
private void NextintersectParamAndPoint(Curve[] overlapCurves, Point3d[] intersectPoints,
Curve curve, out double intersectParam, out Point3d intersectPoint)
{
var intersect_params_and_points = new Dictionary<double, Point3d>();
foreach (var point in intersectPoints)
{
double curve_param;
curve.ClosestPoint(point, out curve_param);
intersect_params_and_points[curve_param] = point;
}
foreach (var overlap_curve in overlapCurves)
{
intersect_params_and_points[overlap_curve.Domain.Min] = overlap_curve.PointAt(overlap_curve.Domain.Min);
intersect_params_and_points[overlap_curve.Domain.Max] = overlap_curve.PointAt(overlap_curve.Domain.Max);
}
var min_t = intersect_params_and_points.Keys.Min();
intersectParam = min_t;
intersectPoint = intersect_params_and_points[intersectParam];
}
示例15: GetFeelerCrvs
private static Curve[] GetFeelerCrvs(IParticle particle, double visionDistance,
bool accurate)
{
Curve[] feelers;
if (accurate)
{
feelers = new Curve[5];
}
else
{
feelers = new Curve[1];
}
double feelerAngle = RS.HALF_PI;
//Calculate straight ahead feeler with length visionDistance
Vector3d feelerVec = particle.Velocity;
feelerVec.Unitize();
feelerVec = Vector3d.Multiply(feelerVec, visionDistance);
feelers[0] = new Line(particle.Position3D, feelerVec).ToNurbsCurve();
if (!accurate)
{
return feelers;
}
//Calculate tertiary feelers with length bodySize
feelerVec = particle.Velocity;
feelerVec.Unitize();
Plane rotPln = new Plane(particle.Position3D, particle.Velocity);
Vector3d rotAxis = rotPln.XAxis;
feelers[1] = GetFeelerCrv(feelerVec, particle.Position, particle.BodySize, feelerAngle, rotAxis);
feelers[2] = GetFeelerCrv(feelerVec, particle.Position, particle.BodySize, -feelerAngle, rotAxis);
rotAxis = rotPln.YAxis;
feelers[3] = GetFeelerCrv(feelerVec, particle.Position, particle.BodySize, feelerAngle, rotAxis);
feelers[4] = GetFeelerCrv(feelerVec, particle.Position, particle.BodySize, -feelerAngle, rotAxis);
return feelers;
}