当前位置: 首页>>代码示例>>C#>>正文


C# BigInteger.Remainder方法代码示例

本文整理汇总了C#中NBitcoin.BouncyCastle.Math.BigInteger.Remainder方法的典型用法代码示例。如果您正苦于以下问题:C# BigInteger.Remainder方法的具体用法?C# BigInteger.Remainder怎么用?C# BigInteger.Remainder使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在NBitcoin.BouncyCastle.Math.BigInteger的用法示例。


在下文中一共展示了BigInteger.Remainder方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: ProcessBlock

		public BigInteger ProcessBlock(
			BigInteger input)
		{
			if (key is RsaPrivateCrtKeyParameters)
			{
				//
				// we have the extra factors, use the Chinese Remainder Theorem - the author
				// wishes to express his thanks to Dirk Bonekaemper at rtsffm.com for
				// advice regarding the expression of this.
				//
				RsaPrivateCrtKeyParameters crtKey = (RsaPrivateCrtKeyParameters)key;

				BigInteger p = crtKey.P;;
				BigInteger q = crtKey.Q;
				BigInteger dP = crtKey.DP;
				BigInteger dQ = crtKey.DQ;
				BigInteger qInv = crtKey.QInv;

				BigInteger mP, mQ, h, m;

				// mP = ((input Mod p) ^ dP)) Mod p
				mP = (input.Remainder(p)).ModPow(dP, p);

				// mQ = ((input Mod q) ^ dQ)) Mod q
				mQ = (input.Remainder(q)).ModPow(dQ, q);

				// h = qInv * (mP - mQ) Mod p
				h = mP.Subtract(mQ);
				h = h.Multiply(qInv);
				h = h.Mod(p);               // Mod (in Java) returns the positive residual

				// m = h * q + mQ
				m = h.Multiply(q);
				m = m.Add(mQ);

				return m;
			}

			return input.ModPow(key.Exponent, key.Modulus);
		}
开发者ID:woutersmit,项目名称:NBitcoin,代码行数:40,代码来源:RSACoreEngine.cs

示例2: GenerateSafePrimes

        /*
         * Finds a pair of prime BigInteger's {p, q: p = 2q + 1}
         * 
         * (see: Handbook of Applied Cryptography 4.86)
         */
        internal static BigInteger[] GenerateSafePrimes(int size, int certainty, SecureRandom random)
        {
            BigInteger p, q;
            int qLength = size - 1;
            int minWeight = size >> 2;

            if (size <= 32)
            {
                for (;;)
                {
                    q = new BigInteger(qLength, 2, random);

                    p = q.ShiftLeft(1).Add(BigInteger.One);

                    if (!p.IsProbablePrime(certainty))
                        continue;

                    if (certainty > 2 && !q.IsProbablePrime(certainty - 2))
                        continue;

                    break;
                }
            }
            else
            {
                // Note: Modified from Java version for speed
                for (;;)
                {
                    q = new BigInteger(qLength, 0, random);

                retry:
                    for (int i = 0; i < primeLists.Length; ++i)
                    {
                        int test = q.Remainder(BigPrimeProducts[i]).IntValue;

                        if (i == 0)
                        {
                            int rem3 = test % 3;
                            if (rem3 != 2)
                            {
                                int diff = 2 * rem3 + 2;
                                q = q.Add(BigInteger.ValueOf(diff));
                                test = (test + diff) % primeProducts[i];
                            }
                        }

                        int[] primeList = primeLists[i];
                        for (int j = 0; j < primeList.Length; ++j)
                        {
                            int prime = primeList[j];
                            int qRem = test % prime;
                            if (qRem == 0 || qRem == (prime >> 1))
                            {
                                q = q.Add(Six);
                                goto retry;
                            }
                        }
                    }

                    if (q.BitLength != qLength)
                        continue;

                    if (!q.RabinMillerTest(2, random))
                        continue;

                    p = q.ShiftLeft(1).Add(BigInteger.One);

                    if (!p.RabinMillerTest(certainty, random))
                        continue;

                    if (certainty > 2 && !q.RabinMillerTest(certainty - 2, random))
                        continue;

                    /*
                     * Require a minimum weight of the NAF representation, since low-weight primes may be
                     * weak against a version of the number-field-sieve for the discrete-logarithm-problem.
                     * 
                     * See "The number field sieve for integers of low weight", Oliver Schirokauer.
                     */
                    if (WNafUtilities.GetNafWeight(p) < minWeight)
                        continue;

                    break;
                }
            }

            return new BigInteger[] { p, q };
        }
开发者ID:woutersmit,项目名称:NBitcoin,代码行数:93,代码来源:DHParametersHelper.cs


注:本文中的NBitcoin.BouncyCastle.Math.BigInteger.Remainder方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。