本文整理汇总了C#中NBitcoin.BouncyCastle.Math.BigInteger.IsProbablePrime方法的典型用法代码示例。如果您正苦于以下问题:C# BigInteger.IsProbablePrime方法的具体用法?C# BigInteger.IsProbablePrime怎么用?C# BigInteger.IsProbablePrime使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类NBitcoin.BouncyCastle.Math.BigInteger
的用法示例。
在下文中一共展示了BigInteger.IsProbablePrime方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: GenerateSafePrimes
/*
* Finds a pair of prime BigInteger's {p, q: p = 2q + 1}
*
* (see: Handbook of Applied Cryptography 4.86)
*/
internal static BigInteger[] GenerateSafePrimes(int size, int certainty, SecureRandom random)
{
BigInteger p, q;
int qLength = size - 1;
int minWeight = size >> 2;
if (size <= 32)
{
for (;;)
{
q = new BigInteger(qLength, 2, random);
p = q.ShiftLeft(1).Add(BigInteger.One);
if (!p.IsProbablePrime(certainty))
continue;
if (certainty > 2 && !q.IsProbablePrime(certainty - 2))
continue;
break;
}
}
else
{
// Note: Modified from Java version for speed
for (;;)
{
q = new BigInteger(qLength, 0, random);
retry:
for (int i = 0; i < primeLists.Length; ++i)
{
int test = q.Remainder(BigPrimeProducts[i]).IntValue;
if (i == 0)
{
int rem3 = test % 3;
if (rem3 != 2)
{
int diff = 2 * rem3 + 2;
q = q.Add(BigInteger.ValueOf(diff));
test = (test + diff) % primeProducts[i];
}
}
int[] primeList = primeLists[i];
for (int j = 0; j < primeList.Length; ++j)
{
int prime = primeList[j];
int qRem = test % prime;
if (qRem == 0 || qRem == (prime >> 1))
{
q = q.Add(Six);
goto retry;
}
}
}
if (q.BitLength != qLength)
continue;
if (!q.RabinMillerTest(2, random))
continue;
p = q.ShiftLeft(1).Add(BigInteger.One);
if (!p.RabinMillerTest(certainty, random))
continue;
if (certainty > 2 && !q.RabinMillerTest(certainty - 2, random))
continue;
/*
* Require a minimum weight of the NAF representation, since low-weight primes may be
* weak against a version of the number-field-sieve for the discrete-logarithm-problem.
*
* See "The number field sieve for integers of low weight", Oliver Schirokauer.
*/
if (WNafUtilities.GetNafWeight(p) < minWeight)
continue;
break;
}
}
return new BigInteger[] { p, q };
}
示例2: ChooseRandomPrime
/// <summary>Choose a random prime value for use with RSA</summary>
/// <param name="bitlength">the bit-length of the returned prime</param>
/// <param name="e">the RSA public exponent</param>
/// <returns>a prime p, with (p-1) relatively prime to e</returns>
protected virtual BigInteger ChooseRandomPrime(int bitlength, BigInteger e)
{
for (;;)
{
BigInteger p = new BigInteger(bitlength, 1, param.Random);
if (p.Mod(e).Equals(BigInteger.One))
continue;
if (!p.IsProbablePrime(param.Certainty))
continue;
if (!e.Gcd(p.Subtract(BigInteger.One)).Equals(BigInteger.One))
continue;
return p;
}
}
示例3: GenerateParameters_FIPS186_2
protected virtual DsaParameters GenerateParameters_FIPS186_2()
{
byte[] seed = new byte[20];
byte[] part1 = new byte[20];
byte[] part2 = new byte[20];
byte[] u = new byte[20];
int n = (L - 1) / 160;
byte[] w = new byte[L / 8];
if (!(digest is Sha1Digest))
throw new InvalidOperationException("can only use SHA-1 for generating FIPS 186-2 parameters");
for (;;)
{
random.NextBytes(seed);
Hash(digest, seed, part1);
Array.Copy(seed, 0, part2, 0, seed.Length);
Inc(part2);
Hash(digest, part2, part2);
for (int i = 0; i != u.Length; i++)
{
u[i] = (byte)(part1[i] ^ part2[i]);
}
u[0] |= (byte)0x80;
u[19] |= (byte)0x01;
BigInteger q = new BigInteger(1, u);
if (!q.IsProbablePrime(certainty))
continue;
byte[] offset = Arrays.Clone(seed);
Inc(offset);
for (int counter = 0; counter < 4096; ++counter)
{
for (int k = 0; k < n; k++)
{
Inc(offset);
Hash(digest, offset, part1);
Array.Copy(part1, 0, w, w.Length - (k + 1) * part1.Length, part1.Length);
}
Inc(offset);
Hash(digest, offset, part1);
Array.Copy(part1, part1.Length - ((w.Length - (n) * part1.Length)), w, 0, w.Length - n * part1.Length);
w[0] |= (byte)0x80;
BigInteger x = new BigInteger(1, w);
BigInteger c = x.Mod(q.ShiftLeft(1));
BigInteger p = x.Subtract(c.Subtract(BigInteger.One));
if (p.BitLength != L)
continue;
if (p.IsProbablePrime(certainty))
{
BigInteger g = CalculateGenerator_FIPS186_2(p, q, random);
return new DsaParameters(p, q, g, new DsaValidationParameters(seed, counter));
}
}
}
}