本文整理汇总了C#中NBitcoin.BouncyCastle.Math.BigInteger.Multiply方法的典型用法代码示例。如果您正苦于以下问题:C# BigInteger.Multiply方法的具体用法?C# BigInteger.Multiply怎么用?C# BigInteger.Multiply使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类NBitcoin.BouncyCastle.Math.BigInteger
的用法示例。
在下文中一共展示了BigInteger.Multiply方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: GenerateSignature
/**
* generate a signature for the given message using the key we were
* initialised with. For conventional Gost3410 the message should be a Gost3411
* hash of the message of interest.
*
* @param message the message that will be verified later.
*/
public BigInteger[] GenerateSignature(
byte[] message)
{
byte[] mRev = new byte[message.Length]; // conversion is little-endian
for (int i = 0; i != mRev.Length; i++)
{
mRev[i] = message[mRev.Length - 1 - i];
}
BigInteger m = new BigInteger(1, mRev);
Gost3410Parameters parameters = key.Parameters;
BigInteger k;
do
{
k = new BigInteger(parameters.Q.BitLength, random);
}
while (k.CompareTo(parameters.Q) >= 0);
BigInteger r = parameters.A.ModPow(k, parameters.P).Mod(parameters.Q);
BigInteger s = k.Multiply(m).
Add(((Gost3410PrivateKeyParameters)key).X.Multiply(r)).
Mod(parameters.Q);
return new BigInteger[]{ r, s };
}
示例2: PlayingWithSignatures
//[Fact]
//http://bitcoin.stackexchange.com/questions/25814/ecdsa-signature-and-the-z-value
//http://www.nilsschneider.net/2013/01/28/recovering-bitcoin-private-keys.html
public void PlayingWithSignatures()
{
var script1 = new Script("30440220d47ce4c025c35ec440bc81d99834a624875161a26bf56ef7fdc0f5d52f843ad1022044e1ff2dfd8102cf7a47c21d5c9fd5701610d04953c6836596b4fe9dd2f53e3e01 04dbd0c61532279cf72981c3584fc32216e0127699635c2789f549e0730c059b81ae133016a69c21e23f1859a95f06d52b7bf149a8f2fe4e8535c8a829b449c5ff");
var script2 = new Script("30440220d47ce4c025c35ec440bc81d99834a624875161a26bf56ef7fdc0f5d52f843ad102209a5f1c75e461d7ceb1cf3cab9013eb2dc85b6d0da8c3c6e27e3a5a5b3faa5bab01 04dbd0c61532279cf72981c3584fc32216e0127699635c2789f549e0730c059b81ae133016a69c21e23f1859a95f06d52b7bf149a8f2fe4e8535c8a829b449c5ff");
var sig1 = (PayToPubkeyHashTemplate.Instance.ExtractScriptSigParameters(script1).TransactionSignature.Signature);
var sig2 = (PayToPubkeyHashTemplate.Instance.ExtractScriptSigParameters(script2).TransactionSignature.Signature);
var n = ECKey.CURVE.N;
var z1 = new BigInteger(1, Encoders.Hex.DecodeData("c0e2d0a89a348de88fda08211c70d1d7e52ccef2eb9459911bf977d587784c6e"));
var z2 = new BigInteger(1, Encoders.Hex.DecodeData("17b0f41c8c337ac1e18c98759e83a8cccbc368dd9d89e5f03cb633c265fd0ddc"));
var z = z1.Subtract(z2);
var s = sig1.S.Subtract(sig2.S);
var n2 = BigInteger.Two.Pow(256).Subtract(new BigInteger("432420386565659656852420866394968145599"));
var expected = new Key(Encoders.Hex.DecodeData("c477f9f65c22cce20657faa5b2d1d8122336f851a508a1ed04e479c34985bf96"), fCompressedIn: false);
var expectedBigInt = new NBitcoin.BouncyCastle.Math.BigInteger(1, Encoders.Hex.DecodeData("c477f9f65c22cce20657faa5b2d1d8122336f851a508a1ed04e479c34985bf96"));
var priv = (z1.Multiply(sig2.S).Subtract(z2.Multiply(sig1.S)).Mod(n)).Divide(sig1.R.Multiply(sig1.S.Subtract(sig2.S)).Mod(n));
Assert.Equal(expectedBigInt.ToString(), priv.ToString());
}
示例3: VerifySignature
// 5.4 pg 29
/**
* return true if the value r and s represent a DSA signature for
* the passed in message (for standard DSA the message should be
* a SHA-1 hash of the real message to be verified).
*/
public virtual bool VerifySignature(byte[] message, BigInteger r, BigInteger s)
{
BigInteger n = key.Parameters.N;
// r and s should both in the range [1,n-1]
if (r.SignValue < 1 || s.SignValue < 1
|| r.CompareTo(n) >= 0 || s.CompareTo(n) >= 0)
{
return false;
}
BigInteger e = CalculateE(n, message);
BigInteger c = s.ModInverse(n);
BigInteger u1 = e.Multiply(c).Mod(n);
BigInteger u2 = r.Multiply(c).Mod(n);
ECPoint G = key.Parameters.G;
ECPoint Q = ((ECPublicKeyParameters) key).Q;
ECPoint point = ECAlgorithms.SumOfTwoMultiplies(G, u1, Q, u2).Normalize();
if (point.IsInfinity)
return false;
BigInteger v = point.AffineXCoord.ToBigInteger().Mod(n);
return v.Equals(r);
}
示例4: VerifySignature
// 5.4 pg 29
/**
* return true if the value r and s represent a DSA signature for
* the passed in message (for standard DSA the message should be
* a SHA-1 hash of the real message to be verified).
*/
public virtual bool VerifySignature(byte[] message, BigInteger r, BigInteger s)
{
BigInteger n = key.Parameters.N;
// r and s should both in the range [1,n-1]
if(r.SignValue < 1 || s.SignValue < 1
|| r.CompareTo(n) >= 0 || s.CompareTo(n) >= 0)
{
return false;
}
BigInteger e = CalculateE(n, message);
BigInteger c = s.ModInverse(n);
BigInteger u1 = e.Multiply(c).Mod(n);
BigInteger u2 = r.Multiply(c).Mod(n);
ECPoint G = key.Parameters.G;
ECPoint Q = ((ECPublicKeyParameters)key).Q;
ECPoint point = ECAlgorithms.SumOfTwoMultiplies(G, u1, Q, u2);
if(point.IsInfinity)
return false;
/*
* If possible, avoid normalizing the point (to save a modular inversion in the curve field).
*
* There are ~cofactor elements of the curve field that reduce (modulo the group order) to 'r'.
* If the cofactor is known and small, we generate those possible field values and project each
* of them to the same "denominator" (depending on the particular projective coordinates in use)
* as the calculated point.X. If any of the projected values matches point.X, then we have:
* (point.X / Denominator mod p) mod n == r
* as required, and verification succeeds.
*
* Based on an original idea by Gregory Maxwell (https://github.com/gmaxwell), as implemented in
* the libsecp256k1 project (https://github.com/bitcoin/secp256k1).
*/
ECCurve curve = point.Curve;
if(curve != null)
{
BigInteger cofactor = curve.Cofactor;
if(cofactor != null && cofactor.CompareTo(Eight) <= 0)
{
ECFieldElement D = GetDenominator(curve.CoordinateSystem, point);
if(D != null && !D.IsZero)
{
ECFieldElement X = point.XCoord;
while(curve.IsValidFieldElement(r))
{
ECFieldElement R = curve.FromBigInteger(r).Multiply(D);
if(R.Equals(X))
{
return true;
}
r = r.Add(n);
}
return false;
}
}
}
BigInteger v = point.Normalize().AffineXCoord.ToBigInteger().Mod(n);
return v.Equals(r);
}
示例5: VerifySignature
/**
* return true if the value r and s represent a Gost3410 signature for
* the passed in message for standard Gost3410 the message should be a
* Gost3411 hash of the real message to be verified.
*/
public bool VerifySignature(
byte[] message,
BigInteger r,
BigInteger s)
{
byte[] mRev = new byte[message.Length]; // conversion is little-endian
for (int i = 0; i != mRev.Length; i++)
{
mRev[i] = message[mRev.Length - 1 - i];
}
BigInteger m = new BigInteger(1, mRev);
Gost3410Parameters parameters = key.Parameters;
if (r.SignValue < 0 || parameters.Q.CompareTo(r) <= 0)
{
return false;
}
if (s.SignValue < 0 || parameters.Q.CompareTo(s) <= 0)
{
return false;
}
BigInteger v = m.ModPow(parameters.Q.Subtract(BigInteger.Two), parameters.Q);
BigInteger z1 = s.Multiply(v).Mod(parameters.Q);
BigInteger z2 = (parameters.Q.Subtract(r)).Multiply(v).Mod(parameters.Q);
z1 = parameters.A.ModPow(z1, parameters.P);
z2 = ((Gost3410PublicKeyParameters)key).Y.ModPow(z2, parameters.P);
BigInteger u = z1.Multiply(z2).Mod(parameters.P).Mod(parameters.Q);
return u.Equals(r);
}
示例6: BlindMessage
/*
* Blind message with the blind factor.
*/
private BigInteger BlindMessage(
BigInteger msg)
{
BigInteger blindMsg = blindingFactor;
blindMsg = msg.Multiply(blindMsg.ModPow(key.Exponent, key.Modulus));
blindMsg = blindMsg.Mod(key.Modulus);
return blindMsg;
}
示例7: ProcessBlock
/**
* Process a single block using the basic ElGamal algorithm.
*
* @param in the input array.
* @param inOff the offset into the input buffer where the data starts.
* @param length the length of the data to be processed.
* @return the result of the ElGamal process.
* @exception DataLengthException the input block is too large.
*/
public byte[] ProcessBlock(
byte[] input,
int inOff,
int length)
{
if (key == null)
throw new InvalidOperationException("ElGamal engine not initialised");
int maxLength = forEncryption
? (bitSize - 1 + 7) / 8
: GetInputBlockSize();
if (length > maxLength)
throw new DataLengthException("input too large for ElGamal cipher.\n");
BigInteger p = key.Parameters.P;
byte[] output;
if (key is ElGamalPrivateKeyParameters) // decryption
{
int halfLength = length / 2;
BigInteger gamma = new BigInteger(1, input, inOff, halfLength);
BigInteger phi = new BigInteger(1, input, inOff + halfLength, halfLength);
ElGamalPrivateKeyParameters priv = (ElGamalPrivateKeyParameters) key;
// a shortcut, which generally relies on p being prime amongst other things.
// if a problem with this shows up, check the p and g values!
BigInteger m = gamma.ModPow(p.Subtract(BigInteger.One).Subtract(priv.X), p).Multiply(phi).Mod(p);
output = m.ToByteArrayUnsigned();
}
else // encryption
{
BigInteger tmp = new BigInteger(1, input, inOff, length);
if (tmp.BitLength >= p.BitLength)
throw new DataLengthException("input too large for ElGamal cipher.\n");
ElGamalPublicKeyParameters pub = (ElGamalPublicKeyParameters) key;
BigInteger pSub2 = p.Subtract(BigInteger.Two);
// TODO In theory, a series of 'k', 'g.ModPow(k, p)' and 'y.ModPow(k, p)' can be pre-calculated
BigInteger k;
do
{
k = new BigInteger(p.BitLength, random);
}
while (k.SignValue == 0 || k.CompareTo(pSub2) > 0);
BigInteger g = key.Parameters.G;
BigInteger gamma = g.ModPow(k, p);
BigInteger phi = tmp.Multiply(pub.Y.ModPow(k, p)).Mod(p);
output = new byte[this.GetOutputBlockSize()];
// TODO Add methods to allow writing BigInteger to existing byte array?
byte[] out1 = gamma.ToByteArrayUnsigned();
byte[] out2 = phi.ToByteArrayUnsigned();
out1.CopyTo(output, output.Length / 2 - out1.Length);
out2.CopyTo(output, output.Length - out2.Length);
}
return output;
}
示例8: VerifySignature
/**
* return true if the value r and s represent a DSA signature for
* the passed in message for standard DSA the message should be a
* SHA-1 hash of the real message to be verified.
*/
public virtual bool VerifySignature(byte[] message, BigInteger r, BigInteger s)
{
DsaParameters parameters = key.Parameters;
BigInteger q = parameters.Q;
BigInteger m = CalculateE(q, message);
if (r.SignValue <= 0 || q.CompareTo(r) <= 0)
{
return false;
}
if (s.SignValue <= 0 || q.CompareTo(s) <= 0)
{
return false;
}
BigInteger w = s.ModInverse(q);
BigInteger u1 = m.Multiply(w).Mod(q);
BigInteger u2 = r.Multiply(w).Mod(q);
BigInteger p = parameters.P;
u1 = parameters.G.ModPow(u1, p);
u2 = ((DsaPublicKeyParameters)key).Y.ModPow(u2, p);
BigInteger v = u1.Multiply(u2).Mod(p).Mod(q);
return v.Equals(r);
}
示例9: GenerateSignature
/**
* generate a signature for the given message using the key we were
* initialised with. For conventional GOST3410 the message should be a GOST3411
* hash of the message of interest.
*
* @param message the message that will be verified later.
*/
public BigInteger[] GenerateSignature(
byte[] message)
{
byte[] mRev = new byte[message.Length]; // conversion is little-endian
for (int i = 0; i != mRev.Length; i++)
{
mRev[i] = message[mRev.Length - 1 - i];
}
BigInteger e = new BigInteger(1, mRev);
ECDomainParameters ec = key.Parameters;
BigInteger n = ec.N;
BigInteger d = ((ECPrivateKeyParameters)key).D;
BigInteger r, s = null;
ECMultiplier basePointMultiplier = CreateBasePointMultiplier();
do // generate s
{
BigInteger k;
do // generate r
{
do
{
k = new BigInteger(n.BitLength, random);
}
while (k.SignValue == 0);
ECPoint p = basePointMultiplier.Multiply(ec.G, k).Normalize();
r = p.AffineXCoord.ToBigInteger().Mod(n);
}
while (r.SignValue == 0);
s = (k.Multiply(e)).Add(d.Multiply(r)).Mod(n);
}
while (s.SignValue == 0);
return new BigInteger[]{ r, s };
}
示例10: VerifySignature
/**
* return true if the value r and s represent a GOST3410 signature for
* the passed in message (for standard GOST3410 the message should be
* a GOST3411 hash of the real message to be verified).
*/
public bool VerifySignature(
byte[] message,
BigInteger r,
BigInteger s)
{
byte[] mRev = new byte[message.Length]; // conversion is little-endian
for (int i = 0; i != mRev.Length; i++)
{
mRev[i] = message[mRev.Length - 1 - i];
}
BigInteger e = new BigInteger(1, mRev);
BigInteger n = key.Parameters.N;
// r in the range [1,n-1]
if (r.CompareTo(BigInteger.One) < 0 || r.CompareTo(n) >= 0)
{
return false;
}
// s in the range [1,n-1]
if (s.CompareTo(BigInteger.One) < 0 || s.CompareTo(n) >= 0)
{
return false;
}
BigInteger v = e.ModInverse(n);
BigInteger z1 = s.Multiply(v).Mod(n);
BigInteger z2 = (n.Subtract(r)).Multiply(v).Mod(n);
ECPoint G = key.Parameters.G; // P
ECPoint Q = ((ECPublicKeyParameters)key).Q;
ECPoint point = ECAlgorithms.SumOfTwoMultiplies(G, z1, Q, z2).Normalize();
if (point.IsInfinity)
return false;
BigInteger R = point.AffineXCoord.ToBigInteger().Mod(n);
return R.Equals(r);
}